]> AND Private Git Repository - prng_gpu.git/blob - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
6ae1ef67161d651368535d85c39290de57654398
[prng_gpu.git] / prng_gpu.tex
1 \documentclass{article}
2 %\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
3 %\documentclass[preprint,12pt]{elsarticle}
4 \usepackage[utf8]{inputenc}
5 \usepackage[T1]{fontenc}
6 \usepackage{fullpage}
7 \usepackage{fancybox}
8 \usepackage{amsmath}
9 \usepackage{amscd}
10 \usepackage{moreverb}
11 \usepackage{commath}
12 \usepackage[ruled,vlined]{algorithm2e}
13 \usepackage{listings}
14 \usepackage[standard]{ntheorem}
15 \usepackage{algorithmic}
16 \usepackage{slashbox}
17 \usepackage{ctable}
18 \usepackage{tabularx}
19 \usepackage{multirow}
20
21 \usepackage{color}
22
23 % Pour mathds : les ensembles IR, IN, etc.
24 \usepackage{dsfont}
25
26 % Pour avoir des intervalles d'entiers
27 \usepackage{stmaryrd}
28
29 \usepackage{graphicx}
30 % Pour faire des sous-figures dans les figures
31 \usepackage{subfigure}
32
33
34 \newtheorem{notation}{Notation}
35
36 \newcommand{\X}{\mathcal{X}}
37 \newcommand{\Go}{G_{f_0}}
38 \newcommand{\B}{\mathds{B}}
39 \newcommand{\N}{\mathds{N}}
40 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
41 \let\sur=\overline
42
43 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
44
45 \begin{document}
46
47 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
48
49
50 %% \author{Jacques M. Bahi}
51 %% \ead{jacques.bahi@univ-fcomte.fr}
52 %% \author{ Rapha\"{e}l Couturier \corref{cor1}}
53 %% \ead{raphael.couturier@univ-fcomte.fr}
54 %% \cortext[cor1]{Corresponding author}
55 %% \author{  Christophe Guyeux}
56 %% \ead{christophe.guyeux@univ-fcomte.fr}
57 %% \author{ Pierre-Cyrille Héam }
58 %% \ead{pierre-cyrille.heam@univ-fcomte.fr}
59
60 \author{Christophe Guyeux \and  Rapha\"{e}l Couturier \and    Pierre-Cyrille Héam \and Jacques M. Bahi\\
61 FEMTO-ST Institute, UMR  6174 CNRS,\\ University of Franche Comte, Belfort, France}
62
63 \maketitle
64
65
66 %\begin{frontmatter}
67 %\IEEEcompsoctitleabstractindextext{
68 \begin{abstract}
69 In this paper we present a new pseudorandom number generator (PRNG) on
70 graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
71 is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
72 implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
73 battery of tests in TestU01.  Experiments show that this PRNG can generate
74 about 20 billion of random numbers  per second on Tesla C1060 and NVidia GTX280
75 cards.
76 It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
77 secure.
78 A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is finally proposed.
79
80
81 \end{abstract}
82 %}
83 %\begin{keyword}
84 %   pseudo random number\sep parallelization\sep GPU\sep cryptography\sep chaos
85 %\end{keyword}
86 %\end{frontmatter}
87
88
89 %\IEEEdisplaynotcompsoctitleabstractindextext
90 %\IEEEpeerreviewmaketitle
91
92
93 \section{Introduction}
94
95 Randomness is of importance in many fields such as scientific simulations or cryptography. 
96 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
97 called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
98 process having all the characteristics of a random noise, called a truly random number
99 generator (TRNG). 
100 In this paper, we focus on reproducible generators, useful for instance in
101 Monte-Carlo based simulators or in several cryptographic schemes.
102 These domains need PRNGs that are statistically irreproachable. 
103 In some fields such as in numerical simulations, speed is a strong requirement
104 that is usually attained by using parallel architectures. In that case,
105 a recurrent problem is that a deflation of the statistical qualities is often
106 reported, when the parallelization of a good PRNG is realized.
107 This is why ad-hoc PRNGs for each possible architecture must be found to
108 achieve both speed and randomness.
109 On the other hand, speed is not the main requirement in cryptography: the most
110 important aspect is to define \emph{secure} generators able to withstand malicious
111 attacks. Roughly speaking, an attacker should not be able in practice to make 
112 the distinction between numbers obtained with the secure generator and a true random
113 sequence.  Or, in an equivalent formulation, he or she should not be
114 able (in practice) to predict the next bit of the generator, having the knowledge of all the 
115 binary digits that have been already released. ``Being able in practice'' refers here
116 to the possibility to achieve this attack in polynomial time, and to the exponential growth
117 of the difficulty of this challenge when the size of the parameters of the PRNG increases.
118
119
120 Finally, a small part of the community working in this domain focuses on a
121 third requirement, that is to define chaotic generators.
122 The main idea is to take advantage from a chaotic dynamical system to obtain a
123 generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
124 Their goal is to map a given chaotic dynamics into a sequence that seems random 
125 and unassailable due to chaos.
126 However, the chaotic maps used as patterns are defined in the real line 
127 whereas computers deal with finite precision numbers.
128 This distortion leads to a deflation of both chaotic properties and speed.
129 Furthermore, authors of such chaotic generators often claim their PRNG
130 are secure due to their chaos properties, but there is no obvious relation
131 between chaos and security as it is understood in cryptography.
132 This is why the use of chaos for PRNG still remains marginal and disputable.
133
134 The authors' opinion is that topological properties of disorder, as they are
135 properly defined in the mathematical theory of chaos, can reinforce the quality
136 of a PRNG. But they are not substitutable for security or statistical perfection.
137 Indeed, to the authors' mind, such properties can be useful in the two following situations. On the
138 one hand, a post-treatment based on a chaotic dynamical system can be applied
139 to a statistically deflective PRNG, in order to improve its statistical 
140 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
141 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
142 cryptographically secure one, in case where chaos can be of interest,
143 \emph{only if these last properties are not lost during
144 the proposed post-treatment}. Such an assumption is behind this research work.
145 It leads to the attempts to define a 
146 family of PRNGs that are chaotic while being fast and statistically perfect,
147 or cryptographically secure.
148 Let us finish this paragraph by noticing that, in this paper, 
149 statistical perfection refers to the ability to pass the whole 
150 {\it BigCrush} battery of tests, which is widely considered as the most
151 stringent statistical evaluation of a sequence claimed as random.
152 This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}.
153 More precisely, each time we performed a test on a PRNG, we ran it
154 twice in order to observe if all $p-$values were inside [0.01, 0.99]. In
155 fact, we observed that few $p-$values (less than ten) are sometimes
156 outside this interval but inside [0.001, 0.999], so that is why a
157 second run allows us to confirm that the values outside are not for
158 the same test. With this approach all our PRNGs pass the {\it
159   BigCrush} successfully and all $p-$values are at least once inside
160 [0.01, 0.99].
161 Chaos, for its part, refers to the well-established definition of a
162 chaotic dynamical system defined by Devaney~\cite{Devaney}.
163
164 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
165 as a chaotic dynamical system. Such a post-treatment leads to a new category of
166 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
167 family, and that the sequence obtained after this post-treatment can pass the
168 NIST~\cite{Nist10}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} batteries of tests, even if the inputted generators
169 cannot.
170 The proposition of this paper is to improve widely the speed of the formerly
171 proposed generator, without any lack of chaos or statistical properties.
172 In particular, a version of this PRNG on graphics processing units (GPU)
173 is proposed.
174 Although GPUs were initially designed  to accelerate
175 the manipulation of  images, they are nowadays commonly  used in many scientific
176 applications. Therefore,  it is important  to be able to  generate pseudorandom
177 numbers inside a GPU when it is run by a  scientific application runs in it. This remark
178 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
179 Such device
180 allows us to generate almost 20 billion of pseudorandom numbers per second.
181 Furthermore, we show that the proposed post-treatment preserves the
182 cryptographical security of the inputted PRNG, when the latter has such a 
183 property.
184 Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric
185 key encryption protocol by using the proposed method.
186
187
188 {\bf Main contributions.} In this paper a new PRNG using chaotic iteration
189 is defined. From a theoretical point of view, it is proven that it has fine
190 topological chaotic properties and that it is cryptographically secure (when
191 the initial PRNG is also cryptographically secure). From a practical point of
192 view, experiments point out a very good statistical behavior. An optimized
193 original implementation of this PRNG is also proposed and experimented.
194 Pseudorandom numbers are generated at a rate of 20GSamples/s, which is faster
195 than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
196 statistical behavior). Experiments are also provided using 
197 \begin{color}{red} the well-known Blum-Blum-Shub
198 (BBS) 
199 \end{color}
200 as the initial
201 random generator. The generation speed is significantly weaker.
202 %Note also that an original qualitative comparison between topological chaotic
203 %properties and statistical tests is also proposed.
204
205
206
207
208 The remainder of this paper  is organized as follows. In Section~\ref{section:related
209   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
210   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
211   and on an iteration process called ``chaotic
212 iterations'' on which the post-treatment is based. 
213 The proposed PRNG and its proof of chaos are given in  Section~\ref{sec:pseudorandom}.
214 %Section~\ref{The generation of pseudorandom sequence} illustrates the statistical
215 %improvement related to the chaotic iteration based post-treatment, for
216 %our previously released PRNGs and a new efficient 
217 %implementation on CPU.
218  Section~\ref{sec:efficient PRNG} %{sec:efficient PRNG
219 %  gpu}  
220  describes and evaluates theoretically new effective versions of
221 our pseudorandom generators,  in particular with a  GPU   implementation. 
222 Such generators are experimented in 
223 Section~\ref{sec:experiments}.
224 We show in Section~\ref{sec:security analysis} that, if the inputted
225 generator is cryptographically secure, then it is also the case of the
226 generator provided by the post-treatment.
227 A practical
228 security evaluation is also outlined in Section~\ref{sec:Practicak evaluation}.
229 Such a proof leads to the proposition of a cryptographically secure and
230 chaotic generator on GPU based on the famous Blum Blum Shub
231 in Section~\ref{sec:CSGPU} and to an improvement of the
232 Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
233 This research work ends by a conclusion section, in which the contribution is
234 summarized and intended future work is presented.
235
236
237
238
239 \section{Related work on GPU based PRNGs}
240 \label{section:related works}
241
242 Numerous research works on defining GPU based PRNGs have already been proposed  in the
243 literature, so that exhaustivity is impossible.
244 This is why the authors of this document only only refer to the most significant attempts 
245 in this domain, from their subjective point of view. 
246 The  quantity of pseudorandom numbers generated per second is mentioned here 
247 only when the information is given in the related work. 
248 A million numbers  per second will be simply written as
249 1MSample/s whereas a billion numbers per second is 1GSample/s.
250
251 In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
252 with no  requirement to a high  precision  integer   arithmetic  or to any bitwise
253 operations. Authors can   generate  about
254 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
255 However, there is neither a mention of statistical tests nor any proof of
256 chaos or cryptography in this document.
257
258 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
259 based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
260 PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
261 GPU. Performances of  the GPU versions are far better than  those obtained with a
262 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
263 However the evaluations of the proposed PRNGs are only statistical ones.
264
265
266 Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
267 PRNGs on  different computing architectures: CPU,  field-programmable gate array
268 (FPGA), massively parallel  processors, and GPU. This study is interesting, because
269 the  performance  of the  same  PRNGs on  different architectures are compared. 
270 FPGA appears as  the  fastest  and the most
271 efficient architecture, providing the fastest number of generated pseudorandom numbers
272 per joule. 
273 However, we notice that the authors can ``only'' generate between 11 and 16GSamples/s
274 with a GTX 280  GPU, which should be compared with
275 the results presented in this document.
276 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
277 able to pass the {\it Crush} battery, which is far easier than the {\it Big Crush} one.
278
279 Lastly, Cuda  has developed  a  library for  the  generation of  pseudorandom numbers  called
280 Curand~\cite{curand11}.        Several       PRNGs        are       implemented, among
281 other things 
282 Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. The  tests reported show that
283 their  fastest version provides  15GSamples/s on  the new  Fermi C2050  card. 
284 But their PRNGs cannot pass the whole TestU01 battery (only one test has failed).
285 \newline
286 \newline
287 We can finally remark that, to the best of our knowledge, no GPU implementation has ever been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.
288
289 \section{Basic Recalls}
290 \label{section:BASIC RECALLS}
291
292 This section is devoted to basic definitions and terminologies in the fields of
293 topological chaos and chaotic iterations. We assume the reader is familiar
294 with basic notions on topology (see for instance~\cite{Devaney}).
295
296
297 \subsection{Devaney's Chaotic Dynamical Systems}
298 \label{subsec:Devaney}
299 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
300 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
301 is for the $k^{th}$ composition of a function $f$. Finally, the following
302 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
303
304
305 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
306 \mathcal{X} \rightarrow \mathcal{X}$.
307
308 \begin{definition}
309 The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
310 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
311 \varnothing$.
312 \end{definition}
313
314 \begin{definition}
315 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
316 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
317 \end{definition}
318
319 \begin{definition}
320 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
321 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
322 any neighborhood of $x$ contains at least one periodic point (without
323 necessarily the same period).
324 \end{definition}
325
326
327 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
328 The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
329 topologically transitive.
330 \end{definition}
331
332 The chaos property is strongly linked to the notion of ``sensitivity'', defined
333 on a metric space $(\mathcal{X},d)$ by:
334
335 \begin{definition}
336 \label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
337 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
338 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
339 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
340
341 The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
342 \end{definition}
343
344 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
345 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
346 sensitive dependence on initial conditions (this property was formerly an
347 element of the definition of chaos). To sum up, quoting Devaney
348 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
349 sensitive dependence on initial conditions. It cannot be broken down or
350 simplified into two subsystems which do not interact because of topological
351 transitivity. And in the midst of this random behavior, we nevertheless have an
352 element of regularity''. Fundamentally different behaviors are consequently
353 possible and occur in an unpredictable way.
354
355
356
357 \subsection{Chaotic Iterations}
358 \label{sec:chaotic iterations}
359
360
361 Let us consider  a \emph{system} with a finite  number $\mathsf{N} \in
362 \mathds{N}^*$ of elements  (or \emph{cells}), so that each  cell has a
363 Boolean  \emph{state}. Having $\mathsf{N}$ Boolean values for these
364  cells  leads to the definition of a particular \emph{state  of the
365 system}. A sequence whose  elements belong to $\llbracket 1;\mathsf{N}
366 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
367 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
368
369 \begin{definition}
370 \label{Def:chaotic iterations}
371 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
372 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
373 a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
374 \emph{chaotic      iterations}     are     defined      by     $x^0\in
375 \mathds{B}^{\mathsf{N}}$ and
376 \begin{equation}
377 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
378 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
379 \begin{array}{ll}
380   x_i^{n-1} &  \text{ if  }S^n\neq i \\
381   \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
382 \end{array}\right.
383 \end{equation}
384 \end{definition}
385
386 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
387 \textquotedblleft  iterated\textquotedblright .  Note  that in  a more
388 general  formulation,  $S^n$  can   be  a  subset  of  components  and
389 $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
390 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
391 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
392 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
393 priori} no link with the mathematical theory of chaos, presented above.
394
395
396 Let us now recall how to define a suitable metric space where chaotic iterations
397 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
398
399 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
400 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function
401 $F_{f}:  \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} 
402 \longrightarrow  \mathds{B}^{\mathsf{N}}$
403 \begin{equation*}
404 \begin{array}{lrll}
405 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta
406 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
407 \end{array}%
408 \end{equation*}%
409 \noindent where + and . are the Boolean addition and product operations.
410 Consider the phase space:
411 \begin{equation}
412 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
413 \mathds{B}^\mathsf{N},
414 \end{equation}
415 \noindent and the map defined on $\mathcal{X}$:
416 \begin{equation}
417 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
418 \end{equation}
419 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
420 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
421 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
422 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
423 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
424 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
425 \begin{equation}
426 \left\{
427 \begin{array}{l}
428 X^0 \in \mathcal{X} \\
429 X^{k+1}=G_{f}(X^k).%
430 \end{array}%
431 \right.
432 \end{equation}%
433
434 With this formulation, a shift function appears as a component of chaotic
435 iterations. The shift function is a famous example of a chaotic
436 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
437 chaotic. 
438 To study this claim, a new distance between two points $X = (S,E), Y =
439 (\check{S},\check{E})\in
440 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
441 \begin{equation}
442 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
443 \end{equation}
444 \noindent where
445 \begin{equation}
446 \left\{
447 \begin{array}{lll}
448 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
449 }\delta (E_{k},\check{E}_{k})}, \\
450 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
451 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
452 \end{array}%
453 \right.
454 \end{equation}
455
456
457 This new distance has been introduced to satisfy the following requirements.
458 \begin{itemize}
459 \item When the number of different cells between two systems is increasing, then
460 their distance should increase too.
461 \item In addition, if two systems present the same cells and their respective
462 strategies start with the same terms, then the distance between these two points
463 must be small because the evolution of the two systems will be the same for a
464 while. Indeed, both dynamical systems start with the same initial condition,
465 use the same update function, and as strategies are the same for a while, furthermore
466 updated components are the same as well.
467 \end{itemize}
468 The distance presented above follows these recommendations. Indeed, if the floor
469 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
470 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
471 measure of the differences between strategies $S$ and $\check{S}$. More
472 precisely, this floating part is less than $10^{-k}$ if and only if the first
473 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
474 nonzero, then the $k^{th}$ terms of the two strategies are different.
475 The impact of this choice for a distance will be investigated at the end of the document.
476
477 Finally, it has been established in \cite{guyeux10} that,
478
479 \begin{proposition}
480 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
481 the metric space $(\mathcal{X},d)$.
482 \end{proposition}
483
484 The chaotic property of $G_f$ has been firstly established for the vectorial
485 Boolean negation $f_0(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
486 introduced the notion of asynchronous iteration graph recalled bellow.
487
488 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
489 {\emph{asynchronous iteration graph}} associated with $f$ is the
490 directed graph $\Gamma(f)$ defined by: the set of vertices is
491 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
492 $i\in \llbracket1;\mathsf{N}\rrbracket$,
493 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
494 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
495 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
496 strategy $s$ such that the parallel iteration of $G_f$ from the
497 initial point $(s,x)$ reaches the point $x'$.
498 We have then proven in \cite{bcgr11:ip} that,
499
500
501 \begin{theorem}
502 \label{Th:Caractérisation   des   IC   chaotiques}  
503 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
504 if and only if $\Gamma(f)$ is strongly connected.
505 \end{theorem}
506
507 Finally, we have established in \cite{bcgr11:ip} that,
508 \begin{theorem}
509   Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
510   iteration graph, $\check{M}$ its adjacency
511   matrix and $M$
512   a $n\times n$ matrix defined by 
513   $
514   M_{ij} = \frac{1}{n}\check{M}_{ij}$ %\textrm{ 
515   if $i \neq j$ and  
516   $M_{ii} = 1 - \frac{1}{n} \sum\limits_{j=1, j\neq i}^n \check{M}_{ij}$ otherwise.
517   
518   If $\Gamma(f)$ is strongly connected, then 
519   the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
520   a law that tends to the uniform distribution 
521   if and only if $M$ is a double stochastic matrix.
522 \end{theorem} 
523
524
525 These results of chaos and uniform distribution have led us to study the possibility of building a
526 pseudorandom number generator (PRNG) based on the chaotic iterations. 
527 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
528 \times \mathds{B}^\mathsf{N}$, is built from Boolean networks $f : \mathds{B}^\mathsf{N}
529 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
530 during implementations (due to the discrete nature of $f$). Indeed, it is as if
531 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
532 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
533 Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.
534
535 \section{Application to Pseudorandomness}
536 \label{sec:pseudorandom}
537
538 \subsection{A First Pseudorandom Number Generator}
539
540 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
541 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
542 leading thus to a new PRNG that 
543 should improve the statistical properties of each
544 generator taken alone. 
545 Furthermore, the generator obtained in this way possesses various chaos properties that none of the generators used as  input present.
546
547
548
549 \begin{algorithm}[h!]
550 \begin{small}
551 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
552 ($n$ bits)}
553 \KwOut{a configuration $x$ ($n$ bits)}
554 $x\leftarrow x^0$\;
555 $k\leftarrow b + PRNG_1(b)$\;
556 \For{$i=0,\dots,k$}
557 {
558 $s\leftarrow{PRNG_2(n)}$\;
559 $x\leftarrow{F_f(s,x)}$\;
560 }
561 return $x$\;
562 \end{small}
563 \caption{An arbitrary round of $Old~ CI~ PRNG_f(PRNG_1,PRNG_2)$}
564 \label{CI Algorithm}
565 \end{algorithm}
566
567
568
569
570 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
571 It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques};
572 an integer $b$, ensuring that the number of executed iterations
573 between two outputs is at least $b$
574 and at most $2b+1$; and an initial configuration $x^0$.
575 It returns the new generated configuration $x$.  Internally, it embeds two
576 inputted generators $PRNG_i(k), i=1,2$,
577  which must return integers
578 uniformly distributed
579 into $\llbracket 1 ; k \rrbracket$.
580 For instance, these PRNGs can be the \textit{XORshift}~\cite{Marsaglia2003},
581 being a category of very fast PRNGs designed by George Marsaglia
582 that repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
583 with a bit shifted version of it. Such a PRNG, which has a period of
584 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. 
585 This XORshift, or any other reasonable PRNG, is used
586 in our own generator to compute both the number of iterations between two
587 outputs (provided by $PRNG_1$) and the strategy elements ($PRNG_2$).
588
589 %This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
590
591
592 \begin{algorithm}[h!]
593 \begin{small}
594 \KwIn{the internal configuration $z$ (a 32-bit word)}
595 \KwOut{$y$ (a 32-bit word)}
596 $z\leftarrow{z\oplus{(z\ll13)}}$\;
597 $z\leftarrow{z\oplus{(z\gg17)}}$\;
598 $z\leftarrow{z\oplus{(z\ll5)}}$\;
599 $y\leftarrow{z}$\;
600 return $y$\;
601 \end{small}
602 \caption{An arbitrary round of \textit{XORshift} algorithm}
603 \label{XORshift}
604 \end{algorithm}
605
606
607 \subsection{A ``New CI PRNG''}
608
609 In order to make the Old CI PRNG usable in practice, we have proposed 
610 an adapted version of the chaotic iteration based generator in~\cite{bg10:ip}.
611 In this ``New CI PRNG'', we prevent a given bit from changing twice between two outputs.
612 This new generator is designed by the following process. 
613
614 First of all, some chaotic iterations have to be done to generate a sequence 
615 $\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$ 
616 of Boolean vectors, which are the successive states of the iterated system. 
617 Some of these vectors will be randomly extracted and our pseudorandom bit 
618 flow will be constituted by their components. Such chaotic iterations are 
619 realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean 
620 vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in 
621 \llbracket 1, 32 \rrbracket^\mathds{N}$ is
622 an \emph{irregular decimation} of $PRNG_2$ sequence, as described in 
623 Algorithm~\ref{Chaotic iteration1}.
624
625 Then, at each iteration, only the $S^n$-th component of state $x^n$ is 
626 updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overline{x_i^{n-1}}$.
627 Such a procedure is equivalent to achieving chaotic iterations with
628 the Boolean vectorial negation $f_0$ and some well-chosen strategies.
629 Finally, some $x^n$ are selected
630 by a sequence $m^n$ as the pseudorandom bit sequence of our generator.
631 $(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers.
632
633 The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}.
634 The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input
635 PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}.
636 This function must be chosen such that the outputs of the resulted PRNG are uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$. Function of \eqref{Formula} achieves this
637 goal (other candidates and more information can be found in ~\cite{bg10:ip}).
638
639 \begin{equation}
640 \label{Formula}
641 m^n = g(y^n)=
642 \left\{
643 \begin{array}{l}
644 0 \text{ if }0 \leqslant{y^n}<{C^0_{32}},\\
645 1 \text{ if }{C^0_{32}} \leqslant{y^n}<\sum_{i=0}^1{C^i_{32}},\\
646 2 \text{ if }\sum_{i=0}^1{C^i_{32}} \leqslant{y^n}<\sum_{i=0}^2{C^i_{32}},\\
647 \vdots~~~~~ ~~\vdots~~~ ~~~~\\
648 N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\
649 \end{array}
650 \right.
651 \end{equation}
652
653 \begin{algorithm}
654 \textbf{Input:} the internal state $x$ (32 bits)\\
655 \textbf{Output:} a state $r$ of 32 bits
656 \begin{algorithmic}[1]
657 \FOR{$i=0,\dots,N$}
658 {
659 \STATE$d_i\leftarrow{0}$\;
660 }
661 \ENDFOR
662 \STATE$a\leftarrow{PRNG_1()}$\;
663 \STATE$k\leftarrow{g(a)}$\;
664 \WHILE{$i=0,\dots,k$}
665
666 \STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\;
667 \STATE$S\leftarrow{b}$\;
668     \IF{$d_S=0$}
669     {
670 \STATE      $x_S\leftarrow{ \overline{x_S}}$\;
671 \STATE      $d_S\leftarrow{1}$\;
672
673     }
674     \ELSIF{$d_S=1$}
675     {
676 \STATE      $k\leftarrow{ k+1}$\;
677     }\ENDIF
678 \ENDWHILE\\
679 \STATE $r\leftarrow{x}$\;
680 \STATE return $r$\;
681 \medskip
682 \caption{An arbitrary round of the new CI generator}
683 \label{Chaotic iteration1}
684 \end{algorithmic}
685 \end{algorithm}
686
687
688 We have shown in~\cite{bfg12a:ip} that the use of chaotic iterations 
689 implies an improvement of the statistical properties for all the
690 inputted defective generators we have investigated.
691 For instance, when considering the TestU01 battery with its 588 tests, we obtained 261 
692 failures for a PRNG based on the logistic map alone, and 
693 this number of failures falls below 138 in the Old CI(Logistic,Logistic) generator.
694 In the XORshift case (146 failures when considering it alone), the results are more impressive,
695 as the chaotic iterations post-treatment  fails with only 8 tests of the TestU01 battery. 
696 Further investigations have been systematically realized in \cite{bfg12a:ip}
697 using a large set of inputted defective PRNGs, the three most used batteries of
698 tests (DieHARD, NIST, and TestU01), and for all the versions of generators we have proposed.
699 In all situations, an obvious improvement of the statistical behavior has
700 been obtained, reinforcing the impression that chaos leads to statistical 
701 enhancement~\cite{bfg12a:ip}.
702
703 \subsection{Improving the Speed of the Former Generator}
704
705 Instead of updating only one cell at each iteration, we now propose to choose a
706 subset of components and to update them together, for speed improvement. Such a proposition leads 
707 to a kind of merger of the two sequences used in Algorithms 
708 \ref{CI Algorithm} and \ref{Chaotic iteration1}. When the updating function is the vectorial negation,
709 this algorithm can be rewritten as follows:
710
711 \begin{equation}
712 \left\{
713 \begin{array}{l}
714 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
715 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
716 \end{array}
717 \right.
718 \label{equation Oplus}
719 \end{equation}
720 where $\oplus$ is for the bitwise exclusive or between two integers. 
721 This rewriting can be understood as follows. The $n-$th term $S^n$ of the
722 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
723 the list of cells to update in the state $x^n$ of the system (represented
724 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th 
725 component of this state (a binary digit) changes if and only if the $k-$th 
726 digit in the binary decomposition of $S^n$ is 1.
727 \begin{color}{red} 
728 Obviously, when $S$ is periodic of period $p$, then $x$ is periodic too of
729 period either $p$ or $2p$, depending on the fact that, after $p$ iterations,
730 the state of the system may or not be the same as before these iterations.
731 \end{color}
732
733 The single basic component presented in Eq.~\ref{equation Oplus} is of 
734 ordinary use as a good elementary brick in various PRNGs. It corresponds
735 to the following discrete dynamical system in chaotic iterations:
736
737 \begin{equation}
738 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
739 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
740 \begin{array}{ll}
741   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
742   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
743 \end{array}\right.
744 \label{eq:generalIC}
745 \end{equation}
746 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
747 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
748 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
749 decomposition of $S^n$ is 1. Such chaotic iterations are more general
750 than the ones presented in Definition \ref{Def:chaotic iterations} because, instead of updating only one term at each iteration,
751 we select a subset of components to change.
752
753
754 Obviously, replacing the previous CI PRNG Algorithms by 
755 Equation~\ref{equation Oplus}, which is possible when the iteration function is
756 the vectorial negation, leads to a speed improvement 
757 (the resulting generator will be referred as ``Xor CI PRNG''
758 in what follows).
759 However, proofs
760 of chaos obtained in~\cite{bg10:ij} have been established
761 only for chaotic iterations of the form presented in Definition 
762 \ref{Def:chaotic iterations}. The question is now to determine whether the
763 use of more general chaotic iterations to generate pseudorandom numbers 
764 faster, does not deflate their topological chaos properties.
765
766 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
767 \label{deuxième def}
768 Let us consider the discrete dynamical systems in chaotic iterations having 
769 the general form: $\forall    n\in     \mathds{N}^{\ast     }$, $  \forall     i\in
770 \llbracket1;\mathsf{N}\rrbracket $,
771
772 \begin{equation}
773   x_i^n=\left\{
774 \begin{array}{ll}
775   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
776   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
777 \end{array}\right.
778 \label{general CIs}
779 \end{equation}
780
781 In other words, at the $n^{th}$ iteration, only the cells whose id is
782 contained into the set $S^{n}$ are iterated.
783
784 Let us now rewrite these general chaotic iterations as usual discrete dynamical
785 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
786 is required in order to study the topological behavior of the system.
787
788 Let us introduce the following function:
789 \begin{equation}
790 \begin{array}{cccc}
791  \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
792          & (i,X) & \longmapsto  & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X,  \end{array}\right.
793 \end{array} 
794 \end{equation}
795 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
796
797 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
798 $F_{f}:  \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} 
799 \longrightarrow \mathds{B}^{\mathsf{N}}$
800 \begin{equation*}
801 \begin{array}{rll}
802  (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
803 \end{array}%
804 \end{equation*}%
805 where + and . are the Boolean addition and product operations, and $\overline{x}$ 
806 is the negation of the Boolean $x$.
807 Consider the phase space:
808 \begin{equation}
809 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
810 \mathds{B}^\mathsf{N},
811 \end{equation}
812 \noindent and the map defined on $\mathcal{X}$:
813 \begin{equation}
814 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant...
815 \end{equation}
816 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
817 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
818 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function} 
819 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$. 
820 Then the general chaotic iterations defined in Equation \ref{general CIs} can 
821 be described by the following discrete dynamical system:
822 \begin{equation}
823 \left\{
824 \begin{array}{l}
825 X^0 \in \mathcal{X} \\
826 X^{k+1}=G_{f}(X^k).%
827 \end{array}%
828 \right.
829 \end{equation}%
830
831 Once more, a shift function appears as a component of these general chaotic 
832 iterations. 
833
834 To study the Devaney's chaos property, a distance between two points 
835 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
836 Let us introduce:
837 \begin{equation}
838 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
839 \label{nouveau d}
840 \end{equation}
841 \noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}%
842  }\delta (E_{k},\check{E}_{k})}$  is once more the Hamming distance, and
843 $  \displaystyle{d_{s}(S,\check{S})}  =  \displaystyle{\dfrac{9}{\mathsf{N}}%
844  \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$,
845 %%RAPH : ici, j'ai supprimé tous les sauts à la ligne
846 %% \begin{equation}
847 %% \left\{
848 %% \begin{array}{lll}
849 %% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
850 %% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\
851 %% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
852 %% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
853 %% \end{array}%
854 %% \right.
855 %% \end{equation}
856 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
857 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
858
859
860 \begin{proposition}
861 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
862 \end{proposition}
863
864 \begin{proof}
865  $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
866 too, thus $d$, being the sum of two distances, will also be a distance.
867  \begin{itemize}
868 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then 
869 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then 
870 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
871  \item $d_s$ is symmetric 
872 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
873 of the symmetric difference. 
874 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$, 
875 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$, 
876 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
877 inequality is obtained.
878  \end{itemize}
879 \end{proof}
880
881
882 Before being able to study the topological behavior of the general 
883 chaotic iterations, we must first establish that:
884
885 \begin{proposition}
886  For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on 
887 $\left( \mathcal{X},d\right)$.
888 \end{proposition}
889
890
891 \begin{proof}
892 We use the sequential continuity.
893 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
894 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
895 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
896 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
897 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
898 sequences).\newline
899 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
900 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
901 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
902 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
903 cell will change its state:
904 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
905
906 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
907 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
908 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
909 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
910
911 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
912 identical and strategies $S^n$ and $S$ start with the same first term.\newline
913 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
914 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
915 \noindent We now prove that the distance between $\left(
916 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
917 0. Let $\varepsilon >0$. \medskip
918 \begin{itemize}
919 \item If $\varepsilon \geqslant 1$, we see that the distance
920 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
921 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
922 \medskip
923 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
924 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
925 \begin{equation*}
926 \exists n_{2}\in \mathds{N},\forall n\geqslant
927 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
928 \end{equation*}%
929 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
930 \end{itemize}
931 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
932 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
933 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
934 10^{-(k+1)}\leqslant \varepsilon $.
935
936 In conclusion,
937 %%RAPH : ici j'ai rajouté une ligne
938 %%TOF : ici j'ai rajouté un commentaire
939 %%TOF : ici aussi
940 $
941 \forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}
942 ,$ $\forall n\geqslant N_{0},$
943 $ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
944 \leqslant \varepsilon .
945 $
946 $G_{f}$ is consequently continuous.
947 \end{proof}
948
949
950 It is now possible to study the topological behavior of the general chaotic
951 iterations. We will prove that,
952
953 \begin{theorem}
954 \label{t:chaos des general}
955  The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
956 the Devaney's property of chaos.
957 \end{theorem}
958
959 Let us firstly prove the following lemma.
960
961 \begin{lemma}[Strong transitivity]
962 \label{strongTrans}
963  For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
964 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
965 \end{lemma}
966
967 \begin{proof}
968  Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
969 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
970 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
971 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
972 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
973 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
974 the form $(S',E')$ where $E'=E$ and $S'$ starts with 
975 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
976 \begin{itemize}
977  \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
978  \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
979 \end{itemize}
980 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
981 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
982 claimed in the lemma.
983 \end{proof}
984
985 We can now prove Theorem~\ref{t:chaos des general}.
986
987 \begin{proof}[Theorem~\ref{t:chaos des general}]
988 Firstly, strong transitivity implies transitivity.
989
990 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
991 prove that $G_f$ is regular, it is sufficient to prove that
992 there exists a strategy $\tilde S$ such that the distance between
993 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
994 $(\tilde S,E)$ is a periodic point.
995
996 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
997 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
998 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
999 and $t_2\in\mathds{N}$ such
1000 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
1001
1002 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
1003 of $S$ and the first $t_2$ terms of $S'$: 
1004 %%RAPH : j'ai coupé la ligne en 2
1005 $$\tilde
1006 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
1007 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
1008 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
1009 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
1010 have $d((S,E),(\tilde S,E))<\epsilon$.
1011 \end{proof}
1012
1013
1014 %\section{Statistical Improvements Using Chaotic Iterations}
1015
1016 %\label{The generation of pseudorandom sequence}
1017
1018
1019 %Let us now explain why we have reasonable ground to believe that chaos 
1020 %can improve statistical properties.
1021 %We will show in this section that chaotic properties as defined in the
1022 %mathematical theory of chaos are related to some statistical tests that can be found
1023 %in the NIST battery. Furthermore, we will check that, when mixing defective PRNGs with
1024 %chaotic iterations, the new generator presents better statistical properties
1025 %(this section summarizes and extends the work of~\cite{bfg12a:ip}).
1026
1027
1028
1029 %\subsection{Qualitative relations between topological properties and statistical tests}
1030
1031
1032 %There are various relations between topological properties that describe an unpredictable behavior for a discrete 
1033 %dynamical system on the one
1034 %hand, and statistical tests to check the randomness of a numerical sequence
1035 %on the other hand. These two mathematical disciplines follow a similar 
1036 %objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a
1037 %recurrent sequence), with two different but complementary approaches.
1038 %It is true that the following illustrative links give only qualitative arguments, 
1039 %and proofs should be provided later to make such arguments irrefutable. However 
1040 %they give a first understanding of the reason why we think that chaotic properties should tend
1041 %to improve the statistical quality of PRNGs.
1042 %%
1043 %Let us now list some of these relations between topological properties defined in the mathematical
1044 %theory of chaos and tests embedded into the NIST battery. %Such relations need to be further 
1045 %%investigated, but they presently give a first illustration of a trend to search similar properties in the 
1046 %%two following fields: mathematical chaos and statistics.
1047
1048
1049 %\begin{itemize}
1050 %    \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must 
1051 %have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of
1052 %a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity
1053 %is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a
1054 %knowledge about the behavior of the system, that is, it never enters into a loop. A similar importance for periodicity is emphasized in
1055 %the two following NIST tests~\cite{Nist10}:
1056 %    \begin{itemize}
1057 %        \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
1058 %        \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are close one to another) in the tested sequence that would indicate a deviation from the assumption of randomness.
1059 %    \end{itemize}
1060
1061 %\item \textbf{Transitivity}. This topological property previously introduced  states that the dynamical system is intrinsically complicated: it cannot be simplified into 
1062 %two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space. 
1063 %This focus on the places visited by the orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory
1064 %of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention 
1065 %is brought on the states visited during a random walk in the two tests below~\cite{Nist10}:
1066 %    \begin{itemize}
1067 %        \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk.
1068 %        \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence.
1069 %    \end{itemize}
1070
1071 %\item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillate as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according
1072 %to Li-Yorke~\cite{Li75,Ruette2001}. A similar property is regarded in the following NIST test~\cite{Nist10}.
1073 %    \begin{itemize}
1074 %        \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow.
1075 %    \end{itemize}
1076 %    \item \textbf{Topological entropy}. The desire to formulate an equivalency of the thermodynamics entropy
1077 %has emerged both in the topological and statistical fields. Once again, a similar objective has led to two different
1078 %rewritting of an entropy based disorder: the famous Shannon definition of entropy is approximated in the statistical approach, 
1079 %whereas topological entropy is defined as follows:
1080 %$x,y \in \mathcal{X}$ are $\varepsilon-$\emph{separated in time $n$} if there exists $k \leqslant n$ such that $d\left(f^{(k)}(x),f^{(k)}(y)\right)>\varepsilon$. Then $(n,\varepsilon)-$separated sets are sets of points that are all $\varepsilon-$separated in time $n$, which
1081 %leads to the definition of $s_n(\varepsilon,Y)$, being the maximal cardinality of all $(n,\varepsilon)-$separated sets. Using these notations, 
1082 %the topological entropy is defined as follows: $$h_{top}(\mathcal{X},f)  = \displaystyle{\lim_{\varepsilon \rightarrow 0} \Big[ \limsup_{n \rightarrow +\infty} \dfrac{1}{n} \log s_n(\varepsilon,\mathcal{X})\Big]}.$$
1083 %This value measures the average exponential growth of the number of distinguishable orbit segments. 
1084 %In this sense, it measures the complexity of the topological dynamical system, whereas 
1085 %the Shannon approach comes to mind when defining the following test~\cite{Nist10}:
1086 %    \begin{itemize}
1087 %\item \textbf{Approximate Entropy Test}. Compare the frequency of the overlapping blocks of two consecutive/adjacent lengths ($m$ and $m+1$) against the expected result for a random sequence.
1088 %    \end{itemize}
1089
1090 %    \item \textbf{Non-linearity, complexity}. Finally, let us remark that non-linearity and complexity are 
1091 %not only sought in general to obtain chaos, but they are also required for randomness, as illustrated by the two tests below~\cite{Nist10}.
1092 %    \begin{itemize}
1093 %\item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence.
1094 %\item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random.
1095 %      \end{itemize}
1096 %\end{itemize}
1097
1098
1099 %We have proven in our previous works~\cite{guyeux12:bc} that chaotic iterations satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques} are, among other
1100 %things, strongly transitive, topologically mixing, chaotic as defined by Li and Yorke,
1101 %and that they have a topological entropy and an exponent of Lyapunov both equal to $ln(\mathsf{N})$,
1102 %where $\mathsf{N}$ is the size of the iterated vector.
1103 %These topological properties make that we are ground to believe that a generator based on chaotic
1104 %iterations will probably be able to pass all the existing statistical batteries for pseudorandomness like
1105 %the NIST one. The following subsections, in which we prove that defective generators have their
1106 %statistical properties improved by chaotic iterations, show that such an assumption is true.
1107
1108 %\subsection{Details of some Existing Generators}
1109
1110 %The list of defective PRNGs we will use 
1111 %as inputs for the statistical tests to come is introduced here.
1112
1113 %Firstly, the simple linear congruency generators (LCGs) will be used. 
1114 %They are defined by the following recurrence:
1115 %\begin{equation}
1116 %x^n = (ax^{n-1} + c)~mod~m,
1117 %\label{LCG}
1118 %\end{equation}
1119 %where $a$, $c$, and $x^0$ must be, among other things, non-negative and inferior to 
1120 %$m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer to two (resp. three) 
1121 %combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
1122
1123 %Secondly, the multiple recursive generators (MRGs) which will be used,
1124 %are based on a linear recurrence of order 
1125 %$k$, modulo $m$~\cite{LEcuyerS07}:
1126 %\begin{equation}
1127 %x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m .
1128 %\label{MRG}
1129 %\end{equation}
1130 %The combination of two MRGs (referred as 2MRGs) is also used in these experiments.
1131
1132 %Generators based on linear recurrences with carry will be regarded too.
1133 %This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
1134 %\begin{equation}
1135 %\label{AWC}
1136 %\begin{array}{l}
1137 %x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
1138 %c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
1139 %the SWB generator, having the recurrence:
1140 %\begin{equation}
1141 %\label{SWB}
1142 %\begin{array}{l}
1143 %x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
1144 %c^n=\left\{
1145 %\begin{array}{l}
1146 %1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
1147 %0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
1148 %and the SWC generator, which is based on the following recurrence:
1149 %\begin{equation}
1150 %\label{SWC}
1151 %\begin{array}{l}
1152 %x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
1153 %c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
1154
1155 %Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
1156 %\begin{equation}
1157 %x^n = x^{n-r} \oplus x^{n-k} .
1158 %\label{GFSR}
1159 %\end{equation}
1160
1161
1162 %Finally, the nonlinear inversive (INV) generator~\cite{LEcuyerS07} has been studied, which is:
1163
1164 %\begin{equation}
1165 %\label{INV}
1166 %\begin{array}{l}
1167 %x^n=\left\{
1168 %\begin{array}{ll}
1169 %(a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
1170 %a^1 & \text{if}~  z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
1171
1172
1173
1174 %\begin{table}
1175 %%\renewcommand{\arraystretch}{1}
1176 %\caption{TestU01 Statistical Test Failures}
1177 %\label{TestU011}
1178 %\centering
1179 %  \begin{tabular}{lccccc}
1180 %    \toprule
1181 %Test name &Tests& Logistic             & XORshift      & ISAAC\\
1182 %Rabbit                                 &       38      &21             &14     &0       \\
1183 %Alphabit                       &       17      &16             &9      &0       \\
1184 %Pseudo DieHARD                         &126    &0              &2      &0      \\
1185 %FIPS\_140\_2                   &16     &0              &0      &0      \\
1186 %SmallCrush                     &15     &4              &5      &0       \\
1187 %Crush                          &144    &95             &57     &0       \\
1188 %Big Crush                      &160    &125            &55     &0       \\ \hline
1189 %Failures               &       &261            &146    &0       \\
1190 %\bottomrule
1191 %  \end{tabular}
1192 %\end{table}
1193
1194
1195
1196 %\begin{table}
1197 %%\renewcommand{\arraystretch}{1}
1198 %\caption{TestU01 Statistical Test Failures for Old CI algorithms ($\mathsf{N}=4$)}
1199 %\label{TestU01 for Old CI}
1200 %\centering
1201 %  \begin{tabular}{lcccc}
1202 %    \toprule
1203 %\multirow{3}*{Test name} & \multicolumn{4}{c}{Old CI}\\
1204 %&Logistic& XORshift& ISAAC&ISAAC  \\ 
1205 %&+& +& + & + \\ 
1206 %&Logistic& XORshift& XORshift&ISAAC  \\ \cmidrule(r){2-5}
1207 %Rabbit                                         &7      &2      &0      &0       \\
1208 %Alphabit                               & 3     &0      &0      &0       \\
1209 %DieHARD                        &0      &0      &0      &0      \\
1210 %FIPS\_140\_2                   &0      &0      &0      &0      \\
1211 %SmallCrush                             &2      &0      &0      &0       \\
1212 %Crush                                  &47     &4      &0      &0       \\
1213 %Big Crush                              &79     &3      &0      &0       \\ \hline
1214 %Failures                               &138    &9      &0      &0       \\
1215 %\bottomrule
1216 %  \end{tabular}
1217 %\end{table}
1218
1219
1220
1221
1222
1223 %\subsection{Statistical tests}
1224 %\label{Security analysis}
1225
1226 %Three batteries of tests are reputed and regularly used
1227 %to evaluate the statistical properties of newly designed pseudorandom
1228 %number generators. These batteries are named DieHard~\cite{Marsaglia1996},
1229 %the NIST suite~\cite{ANDREW2008}, and the most stringent one called
1230 %TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
1231
1232
1233
1234 %\label{Results and discussion}
1235 %\begin{table*}
1236 %%\renewcommand{\arraystretch}{1}
1237 %\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
1238 %\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
1239 %\centering
1240 %  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
1241 %    \hline\hline
1242 %Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1243 %\backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB  & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
1244 %NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15}   & 14/15 & 14/15  & 14/15 & 14/15& 14/15& 14/15 \\ \hline
1245 %DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
1246 %\end{tabular}
1247 %\end{table*}
1248
1249 %Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the 
1250 %results on the two first batteries recalled above, indicating that all the PRNGs presented
1251 %in the previous section
1252 %cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot 
1253 %fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
1254 %iterations can solve this issue.
1255 %%More precisely, to
1256 %%illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
1257 %%\begin{enumerate}
1258 %%  \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
1259 %%  \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
1260 %%  \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
1261 %%\begin{equation}
1262 %%\begin{array}{l}
1263 %%\left\{
1264 %%\begin{array}{l}
1265 %%x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
1266 %%\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
1267 %%\end{equation}
1268 %%$m$ is called the \emph{functional power}.
1269 %%\end{enumerate}
1270 %%
1271 %The obtained results are reproduced in Table
1272 %\ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
1273 %The scores written in boldface indicate that all the tests have been passed successfully, whereas an 
1274 %asterisk ``*'' means that the considered passing rate has been improved.
1275 %The improvements are obvious for both the ``Old CI'' and the ``New CI'' generators.
1276 %Concerning the ``Xor CI PRNG'', the score is less spectacular. Because of a large speed improvement, the statistics
1277 % are not as good as for the two other versions of these CIPRNGs.
1278 %However 8 tests have been improved (with no deflation for the other results).
1279
1280
1281 %\begin{table*}
1282 %%\renewcommand{\arraystretch}{1.3}
1283 %\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
1284 %\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
1285 %\centering
1286 %  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
1287 %    \hline
1288 %Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1289 %\backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG  & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
1290 %Old CIPRNG\\ \hline \hline
1291 %NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}   & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1292 %DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} *  & \textbf{18/18} *  & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
1293 %New CIPRNG\\ \hline \hline
1294 %NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}  & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1295 %DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
1296 %Xor CIPRNG\\ \hline\hline
1297 %NIST & 14/15*& \textbf{15/15} *   & \textbf{15/15}   & \textbf{15/15}   & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15}  \\ \hline
1298 %DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
1299 %\end{tabular}
1300 %\end{table*}
1301
1302
1303 %We have then investigated in~\cite{bfg12a:ip} if it were possible to improve
1304 %the statistical behavior of the Xor CI version by combining more than one 
1305 %$\oplus$ operation. Results are summarized in Table~\ref{threshold}, illustrating
1306 %the progressive increasing effects of chaotic iterations, when giving time to chaos to get settled in.
1307 %Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained 
1308 %using chaotic iterations on defective generators.
1309
1310 %\begin{table*}
1311 %%\renewcommand{\arraystretch}{1.3}
1312 %\caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
1313 %\label{threshold}
1314 %\centering
1315 %  \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
1316 %    \hline
1317 %Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3  & MRG2 \\ \hline\hline
1318 %Threshold  value $m$& 19 & 7  & 2& 1 & 11& 9& 3& 4\\ \hline\hline
1319 %\end{tabular}
1320 %\end{table*}
1321
1322 %Finally, the TestU01 battery has been launched on three well-known generators 
1323 %(a logistic map, a simple XORshift, and the cryptographically secure ISAAC, 
1324 %see Table~\ref{TestU011}). These results can be compared with 
1325 %Table~\ref{TestU01 for Old CI}, which gives the scores obtained by the
1326 %Old CI PRNG that has received these generators.
1327 %The obvious improvement speaks for itself, and together with the other
1328 %results recalled in this section, it reinforces the opinion that a strong
1329 %correlation between topological properties and statistical behavior exists.
1330
1331
1332 %The next subsection will now give a concrete original implementation of the Xor CI PRNG, the
1333 %fastest generator in the chaotic iteration based family. In the remainder,
1334 %this generator will be simply referred to as CIPRNG, or ``the proposed PRNG'', if this statement does not
1335 %raise ambiguity.
1336
1337
1338 \section{Toward Efficiency and Improvement for CI PRNG}
1339 \label{sec:efficient PRNG}
1340
1341 \subsection{First Efficient Implementation of a PRNG based on Chaotic Iterations}
1342 %
1343 %Based on the proof presented in the previous section, it is now possible to 
1344 %improve the speed of the generator formerly presented in~\cite{bgw09:ip,guyeux10}. 
1345 %The first idea is to consider
1346 %that the provided strategy is a pseudorandom Boolean vector obtained by a
1347 %given PRNG.
1348 %An iteration of the system is simply the bitwise exclusive or between
1349 %the last computed state and the current strategy.
1350 %Topological properties of disorder exhibited by chaotic 
1351 %iterations can be inherited by the inputted generator, we hope by doing so to 
1352 %obtain some statistical improvements while preserving speed.
1353 %
1354 %%RAPH : j'ai viré tout ca
1355 %% Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
1356 %% are
1357 %% done.  
1358 %% Suppose  that $x$ and the  strategy $S^i$ are given as
1359 %% binary vectors.
1360 %% Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
1361
1362 %% \begin{table}
1363 %% \begin{scriptsize}
1364 %% $$
1365 %% \begin{array}{|cc|cccccccccccccccc|}
1366 %% \hline
1367 %% x      &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
1368 %% \hline
1369 %% S^i      &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
1370 %% \hline
1371 %% x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
1372 %% \hline
1373
1374 %% \hline
1375 %%  \end{array}
1376 %% $$
1377 %% \end{scriptsize}
1378 %% \caption{Example of an arbitrary round of the proposed generator}
1379 %% \label{TableExemple}
1380 %% \end{table}
1381
1382
1383
1384
1385 \lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label={algo:seqCIPRNG}}
1386 \begin{small}
1387 \begin{lstlisting}
1388
1389 unsigned int CIPRNG() {
1390   static unsigned int x = 123123123;
1391   unsigned long t1 = xorshift();
1392   unsigned long t2 = xor128();
1393   unsigned long t3 = xorwow();
1394   x = x^(unsigned int)t1;
1395   x = x^(unsigned int)(t2>>32);
1396   x = x^(unsigned int)(t3>>32);
1397   x = x^(unsigned int)t2;
1398   x = x^(unsigned int)(t1>>32);
1399   x = x^(unsigned int)t3;
1400   return x;
1401 }
1402 \end{lstlisting}
1403 \end{small}
1404
1405
1406
1407 In Listing~\ref{algo:seqCIPRNG} a sequential  version of the proposed PRNG based
1408 on  chaotic  iterations  is  presented.   The xor  operator  is  represented  by
1409 \textasciicircum.  This function uses  three classical 64-bits PRNGs, namely the
1410 \texttt{xorshift},         the          \texttt{xor128},         and         the
1411 \texttt{xorwow}~\cite{Marsaglia2003}.  In the following, we call them ``xor-like
1412 PRNGs''.   As each  xor-like PRNG  uses 64-bits  whereas our  proposed generator
1413 works with 32-bits, we use the command \texttt{(unsigned int)}, that selects the
1414 32 least  significant bits  of a given  integer, and the  code \texttt{(unsigned
1415   int)(t$>>$32)} in order to obtain the 32 most significant bits of \texttt{t}.
1416
1417 Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
1418 that  are provided by  3 64-bits  PRNGs.  This  version successfully  passes the
1419 stringent BigCrush battery of tests~\cite{LEcuyerS07}. 
1420 At this point, we thus
1421 have defined an efficient and statistically unbiased generator. Its speed is
1422 directly related to the use of linear operations, but for the same reason,
1423 this fast generator cannot be proven as secure.
1424
1425
1426
1427 \subsection{Efficient PRNGs based on Chaotic Iterations on GPU}
1428 \label{sec:efficient PRNG gpu}
1429
1430 In order to  take benefits from the computing power  of GPU, a program
1431 needs  to have  independent blocks  of  threads that  can be  computed
1432 simultaneously. In general,  the larger the number of  threads is, the
1433 more local  memory is  used, and the  less branching  instructions are
1434 used  (if,  while,  ...),  the  better the  performances  on  GPU  are.
1435 Obviously, having these requirements in  mind, it is possible to build
1436 a   program    similar   to    the   one   presented    in  Listing 
1437 \ref{algo:seqCIPRNG}, which computes  pseudorandom numbers on GPU.  To
1438 do  so,  we  must   firstly  recall  that  in  the  CUDA~\cite{Nvid10}
1439 environment,    threads    have     a    local    identifier    called
1440 \texttt{ThreadIdx},  which   is  relative  to   the  block  containing
1441 them. Furthermore, in  CUDA, parts of  the code that are executed by the  GPU, are
1442 called {\it kernels}.
1443
1444
1445 \subsection{Naive Version for GPU}
1446
1447  
1448 It is possible to deduce from the CPU version a fairly similar version adapted to GPU.
1449 The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG.  
1450 Of course,  the  three xor-like
1451 PRNGs  used in these computations must have different  parameters. 
1452 In a given thread, these parameters are
1453 randomly picked from another PRNGs. 
1454 The  initialization stage is performed by  the CPU.
1455 To do so, the  ISAAC  PRNG~\cite{Jenkins96} is used to  set  all  the
1456 parameters embedded into each thread.   
1457
1458 The implementation of  the three
1459 xor-like  PRNGs  is  straightforward  when  their  parameters  have  been
1460 allocated in  the GPU memory.  Each xor-like  works with  an internal
1461 number  $x$  that saves  the  last  generated  pseudorandom number. Additionally,  the
1462 implementation of the  xor128, the xorshift, and the  xorwow respectively require
1463 4, 5, and 6 unsigned long as internal variables.
1464
1465
1466 \begin{algorithm}
1467 \begin{small}
1468 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
1469 PRNGs in global memory\;
1470 NumThreads: number of threads\;}
1471 \KwOut{NewNb: array containing random numbers in global memory}
1472 \If{threadIdx is concerned by the computation} {
1473   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
1474   \For{i=1 to n} {
1475     compute a new PRNG as in Listing\ref{algo:seqCIPRNG}\;
1476     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1477   }
1478   store internal variables in InternalVarXorLikeArray[threadIdx]\;
1479 }
1480 \end{small}
1481 \caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
1482 \label{algo:gpu_kernel}
1483 \end{algorithm}
1484
1485
1486
1487 Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of the proposed  PRNG on
1488 GPU.  Due to the available  memory in the  GPU and the number  of threads
1489 used simultaneously,  the number  of random numbers  that a thread  can generate
1490 inside   a    kernel   is   limited  (\emph{i.e.},    the    variable   \texttt{n}   in
1491 algorithm~\ref{algo:gpu_kernel}). For instance, if  $100,000$ threads are used and
1492 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
1493 then   the  memory   required   to  store all of the  internals   variables  of both the  xor-like
1494 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
1495 and  the pseudorandom  numbers generated by  our  PRNG,  is  equal to  $100,000\times  ((4+5+6)\times
1496 2+(1+100))=1,310,000$ 32-bits numbers, that is, approximately $52$Mb.
1497 \begin{color}{red}
1498 Remark that the only requirement regarding the seed regarding the security of our PRNG is
1499 that it must be randomly picked. Indeed, the asymptotic security of BBS guarantees
1500 that, as the seed length increases, no polynomial time statistical test can 
1501 distinguish the pseudorandom sequences from truly random sequences with non-negligible probability,
1502 see, \emph{e.g.},~\cite{Sidorenko:2005:CSB:2179218.2179250}.
1503 \end{color}
1504
1505 This generator is able to pass the whole BigCrush battery of tests, for all
1506 the versions that have been tested depending on their number of threads 
1507 (called \texttt{NumThreads} in our algorithm, tested up to $5$ million).
1508
1509 \begin{remark}
1510 The proposed algorithm has  the  advantage of  manipulating  independent
1511 PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
1512 to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
1513 using a master node for the initialization. This master node computes the initial parameters
1514 for all the different nodes involved in the computation.
1515 \end{remark}
1516
1517 \subsection{Improved Version for GPU}
1518
1519 As GPU cards using CUDA have a shared memory between threads of the same block, it
1520 is possible  to use this  feature in order  to simplify the  previous algorithm,
1521 i.e., to use less  than 3 xor-like PRNGs. The solution  consists in computing only
1522 one xor-like PRNG by thread, saving  it into the shared memory, and then to use the results
1523 of some  other threads in the  same block of  threads. In order to  define which
1524 thread uses the result of which other  one, we can use a combination array that
1525 contains  the indexes  of  all threads  and  for which  a combination has  been
1526 performed. 
1527
1528 In  Algorithm~\ref{algo:gpu_kernel2},  two  combination  arrays are  used.   The
1529 variable     \texttt{offset}    is     computed    using     the     value    of
1530 \texttt{combination\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
1531 representing the  indexes of  the other  threads whose results  are used  by the
1532 current one.   In this algorithm, we  consider that a 32-bits  xor-like PRNG has
1533 been chosen. In practice, we  use the xor128 proposed in~\cite{Marsaglia2003} in
1534 which  unsigned longs  (64 bits)  have been  replaced by  unsigned  integers (32
1535 bits).
1536
1537 This version  can also pass the whole {\it BigCrush} battery of tests.
1538
1539 \begin{algorithm}
1540 \begin{small}
1541 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
1542 in global memory\;
1543 NumThreads: Number of threads\;
1544 array\_comb1, array\_comb2: Arrays containing combinations of size combination\_size\;}
1545
1546 \KwOut{NewNb: array containing random numbers in global memory}
1547 \If{threadIdx is concerned} {
1548   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables including shared memory and x\;
1549   offset = threadIdx\%combination\_size\;
1550   o1 = threadIdx-offset+array\_comb1[offset]\;
1551   o2 = threadIdx-offset+array\_comb2[offset]\;
1552   \For{i=1 to n} {
1553     t=xor-like()\;
1554     t=t\textasciicircum shmem[o1]\textasciicircum shmem[o2]\;
1555     shared\_mem[threadIdx]=t\;
1556     x = x\textasciicircum t\;
1557
1558     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1559   }
1560   store internal variables in InternalVarXorLikeArray[threadIdx]\;
1561 }
1562 \end{small}
1563 \caption{Main kernel for the chaotic iterations based PRNG GPU efficient
1564 version\label{IR}}
1565 \label{algo:gpu_kernel2} 
1566 \end{algorithm}
1567
1568 \subsection{Chaos Evaluation of the Improved Version}
1569
1570 A run of Algorithm~\ref{algo:gpu_kernel2} consists in an operation ($x=x\oplus t$) having 
1571 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
1572 system of Eq.~\ref{eq:generalIC}. That is, an iteration of the general chaotic
1573 iterations is realized between the last stored value $x$ of the thread and a strategy $t$
1574 (obtained by a bitwise exclusive or between a value provided by a xor-like() call
1575 and two values previously obtained by two other threads).
1576 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
1577 we must guarantee that this dynamical system iterates on the space 
1578 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
1579 The left term $x$ obviously belongs to $\mathds{B}^ \mathsf{N}$.
1580 To prevent  any flaws of chaotic properties, we must check that the right 
1581 term (the last $t$), corresponding to the strategies,  can possibly be equal to any
1582 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
1583
1584 Such a result is obvious, as for the xor-like(), all the
1585 integers belonging into its interval of definition can occur at each iteration, and thus the 
1586 last $t$ respects the requirement. Furthermore, it is possible to
1587 prove by an immediate mathematical induction that, as the initial $x$
1588 is uniformly distributed (it is provided by a cryptographically secure PRNG),
1589 the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too,
1590 (this is the induction hypothesis), and thus the next $x$ is finally uniformly distributed.
1591
1592 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1593 chaotic iterations presented previously, and for this reason, it satisfies the 
1594 Devaney's formulation of a chaotic behavior.
1595
1596 \section{Experiments}
1597 \label{sec:experiments}
1598
1599 Different experiments  have been  performed in order  to measure  the generation
1600 speed. We have used a first computer equipped with a Tesla C1060 NVidia  GPU card
1601 and an
1602 Intel  Xeon E5530 cadenced  at 2.40  GHz,  and 
1603 a second computer  equipped with a smaller  CPU and  a GeForce GTX  280. 
1604 All the
1605 cards have 240 cores.
1606
1607 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  quantity of  pseudorandom numbers
1608 generated per second with various xor-like based PRNGs. In this figure, the optimized
1609 versions use the {\it xor64} described in~\cite{Marsaglia2003}, whereas the naive versions
1610 embed  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIPRNG}.   In
1611 order to obtain the optimal performances, the storage of pseudorandom numbers
1612 into the GPU memory has been removed. This step is time consuming and slows down the numbers
1613 generation.  Moreover this   storage  is  completely
1614 useless, in case of applications that consume the pseudorandom
1615 numbers  directly   after generation. We can see  that when the number of  threads is greater
1616 than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated
1617 per second  is almost constant.  With the  naive version, this value ranges from 2.5 to
1618 3GSamples/s.   With  the  optimized   version,  it  is  approximately  equal to
1619 20GSamples/s. Finally  we can remark  that both GPU  cards are quite  similar, but in
1620 practice,  the Tesla C1060  has more  memory than  the GTX  280, and  this memory
1621 is of better quality.
1622 As a  comparison,   Listing~\ref{algo:seqCIPRNG}  leads   to the  generation of  about
1623 138MSample/s when using one core of the Xeon E5530.
1624
1625 \begin{figure}[htbp]
1626 \begin{center}
1627   \includegraphics[scale=0.7]{curve_time_xorlike_gpu.pdf}
1628 \end{center}
1629 \caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
1630 \label{fig:time_xorlike_gpu}
1631 \end{figure}
1632
1633
1634
1635
1636
1637 In Figure~\ref{fig:time_bbs_gpu} we highlight  the performances of the optimized
1638 BBS-based PRNG on GPU.  On  the Tesla C1060 we obtain approximately 700MSample/s
1639 and  on the  GTX 280  about  670MSample/s, which  is obviously  slower than  the
1640 xorlike-based PRNG on GPU. However, we  will show in the next sections that this
1641 new PRNG  has a strong  level of  security, which is  necessarily paid by  a speed
1642 reduction.
1643
1644 \begin{figure}[htbp]
1645 \begin{center}
1646   \includegraphics[scale=0.7]{curve_time_bbs_gpu.pdf}
1647 \end{center}
1648 \caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
1649 \label{fig:time_bbs_gpu}
1650 \end{figure}
1651
1652 All  these  experiments allow  us  to conclude  that  it  is possible  to
1653 generate a very large quantity of pseudorandom  numbers statistically perfect with the  xor-like version.
1654 To a certain extend, it is also the case with the secure BBS-based version, the speed deflation being
1655 explained by the fact that the former  version has ``only''
1656 chaotic properties and statistical perfection, whereas the latter is also cryptographically secure,
1657 as  shown in the next sections.
1658
1659
1660
1661
1662
1663
1664
1665 \section{Security Analysis}
1666
1667
1668 This section is dedicated to the security analysis of the
1669   proposed PRNGs, both from a theoretical and from a practical point of view.
1670
1671 \subsection{Theoretical Proof of Security}
1672 \label{sec:security analysis}
1673
1674 The standard definition
1675   of {\it indistinguishability} used is the classical one as defined for
1676   instance in~\cite[chapter~3]{Goldreich}. 
1677   This property shows that predicting the future results of the PRNG
1678   cannot be done in a reasonable time compared to the generation time. It is important to emphasize that this
1679   is a relative notion between breaking time and the sizes of the
1680   keys/seeds. Of course, if small keys or seeds are chosen, the system can
1681   be broken in practice. But it also means that if the keys/seeds are large
1682   enough, the system is secured.
1683 As a complement, an example of a concrete practical evaluation of security
1684 is outlined in the next subsection.
1685
1686 In this section the concatenation of two strings $u$ and $v$ is classically
1687 denoted by $uv$.
1688 In a cryptographic context, a pseudorandom generator is a deterministic
1689 algorithm $G$ transforming strings  into strings and such that, for any
1690 seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
1691 $\ell_G(m)$ with $\ell_G(m)>m$.
1692 The notion of {\it secure} PRNGs can now be defined as follows. 
1693
1694 \begin{definition}
1695 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1696 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1697 large $m$'s,
1698 $$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
1699 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1700 probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
1701 internal coin tosses of $D$. 
1702 \end{definition}
1703
1704 Intuitively,  it means  that  there is  no  polynomial time  algorithm that  can
1705 distinguish a  perfect uniform random generator  from $G$ with  a non negligible
1706 probability.   An equivalent  formulation of  this well-known  security property
1707 means that  it is  possible \emph{in practice}  to predict  the next bit  of the
1708 generator, knowing all  the previously produced ones.  The  interested reader is
1709 referred to~\cite[chapter~3]{Goldreich}  for more  information. Note that  it is
1710 quite easily possible to change the function $\ell$ into any polynomial function
1711 $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
1712
1713 The generation schema developed in (\ref{equation Oplus}) is based on a
1714 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1715 without loss of generality, that for any string $S_0$ of size $N$, the size
1716 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
1717 Let $S_1,\ldots,S_k$ be the 
1718 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1719 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1720 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1721 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1722 (x_o\bigoplus_{i=0}^{i=k}S_i)$. One in particular has $\ell_{X}(2N)=kN=\ell_H(N)$. 
1723 We claim now that if this PRNG is secure,
1724 then the new one is secure too.
1725
1726 \begin{proposition}
1727 \label{cryptopreuve}
1728 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1729 PRNG too.
1730 \end{proposition}
1731
1732 \begin{proof}
1733 The proposition is proven by contraposition. Assume that $X$ is not
1734 secure. By Definition, there exists a polynomial time probabilistic
1735 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1736 $N\geq \frac{k_0}{2}$ satisfying 
1737 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1738 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1739 $kN$:
1740 \begin{enumerate}
1741 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1742 \item Pick a string $y$ of size $N$ uniformly at random.
1743 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1744   \bigoplus_{i=1}^{i=k} w_i).$
1745 \item Return $D(z)$.
1746 \end{enumerate}
1747
1748
1749 Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1750 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1751 (each $w_i$ has length $N$) to 
1752 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1753   \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1754 \begin{equation}\label{PCH-1}
1755 D^\prime(w)=D(\varphi_y(w)),
1756 \end{equation}
1757 where $y$ is randomly generated. 
1758 Moreover, for each $y$, $\varphi_{y}$ is injective: if 
1759 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1760 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1761 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1762 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1763 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1764 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1765 one has
1766 $\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and,
1767 therefore, 
1768 \begin{equation}\label{PCH-2}
1769 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1].
1770 \end{equation}
1771
1772 Now, using (\ref{PCH-1}) again, one has  for every $x$,
1773 \begin{equation}\label{PCH-3}
1774 D^\prime(H(x))=D(\varphi_y(H(x))),
1775 \end{equation}
1776 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1777 thus
1778 \begin{equation}%\label{PCH-3}      %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant
1779 D^\prime(H(x))=D(yx),
1780 \end{equation}
1781 where $y$ is randomly generated. 
1782 It follows that 
1783
1784 \begin{equation}\label{PCH-4}
1785 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1786 \end{equation}
1787  From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1788 there exists a polynomial time probabilistic
1789 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1790 $N\geq \frac{k_0}{2}$ satisfying 
1791 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1792 proving that $H$ is not secure, which is a contradiction. 
1793 \end{proof}
1794
1795
1796
1797 \subsection{Practical Security Evaluation}
1798 \label{sec:Practicak evaluation}
1799
1800 Pseudorandom generators based on Eq.~\eqref{equation Oplus} are thus cryptographically secure when
1801 they are XORed with an already cryptographically
1802 secure PRNG. But, as stated previously,
1803 such a property does not mean that, whatever the
1804 key size, no attacker can predict the next bit
1805 knowing all the previously released ones.
1806 However, given a key size, it is possible to 
1807 measure in practice the minimum duration needed
1808 for an attacker to break a cryptographically
1809 secure PRNG, if we know the power of his/her
1810 machines. Such a concrete security evaluation 
1811 is related to the $(T,\varepsilon)-$security
1812 notion, which is recalled and evaluated in what 
1813 follows, for the sake of completeness.
1814
1815 Let us firstly recall that,
1816 \begin{definition}
1817 Let $\mathcal{D} : \mathds{B}^M \longrightarrow \mathds{B}$ be a probabilistic algorithm that runs
1818 in time $T$. 
1819 Let $\varepsilon > 0$. 
1820 $\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom
1821 generator $G$ if
1822
1823 $$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right. - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$$
1824 \noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation
1825 ``$\in_R$'' indicates the process of selecting an element at random and uniformly over the
1826 corresponding set.
1827 \end{definition}
1828
1829 Let us recall that the running time of a probabilistic algorithm is defined to be the
1830 maximum of the expected number of steps needed to produce an output, maximized
1831 over all inputs; the expected number is averaged over all coin flips made by the algorithm~\cite{Knuth97}.
1832 We are now able to define the notion of cryptographically secure PRNGs:
1833
1834 \begin{definition}
1835 A pseudorandom generator is $(T,\varepsilon)-$secure if there exists no $(T,\varepsilon)-$distinguishing attack on this pseudorandom generator.
1836 \end{definition}
1837
1838
1839
1840
1841
1842
1843
1844 Suppose now that the PRNG of Eq.~\eqref{equation Oplus} will work during 
1845 $M=100$ time units, and that during this period,
1846 an attacker can realize $10^{12}$ clock cycles.
1847 We thus wonder whether, during the PRNG's 
1848 lifetime, the attacker can distinguish this 
1849 sequence from a truly random one, with a probability
1850 greater than $\varepsilon = 0.2$.
1851 We consider that $N$ has 900 bits.
1852
1853 Predicting the next generated bit knowing all the
1854 previously released ones by Eq.~\eqref{equation Oplus} is obviously equivalent to predicting the
1855 next bit in the BBS generator, which
1856 is cryptographically secure. More precisely, it
1857 is $(T,\varepsilon)-$secure: no 
1858 $(T,\varepsilon)-$distinguishing attack can be
1859 successfully realized on this PRNG, if~\cite{Fischlin}
1860 \begin{equation}
1861 T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M)
1862 \label{mesureConcrete}
1863 \end{equation}
1864 where $M$ is the length of the output ($M=100$ in
1865 our example), and $L(N)$ is equal to
1866 $$
1867 2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln~ 2)^\frac{1}{3} \times (ln(N~ln~  2))^\frac{2}{3}\right)
1868 $$
1869 is the number of clock cycles to factor a $N-$bit
1870 integer.
1871
1872
1873
1874
1875 A direct numerical application shows that this attacker 
1876 cannot achieve his/her $(10^{12},0.2)$ distinguishing
1877 attack in that context.
1878
1879
1880
1881 \section{Cryptographical Applications}
1882
1883 \subsection{A Cryptographically Secure PRNG for GPU}
1884 \label{sec:CSGPU}
1885
1886 It is  possible to build a  cryptographically secure PRNG based  on the previous
1887 algorithm (Algorithm~\ref{algo:gpu_kernel2}).   Due to Proposition~\ref{cryptopreuve},
1888 it simply consists  in replacing
1889 the  {\it  xor-like} PRNG  by  a  cryptographically  secure one.  
1890 We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form:
1891 $$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers (these
1892 prime numbers  need to be congruent  to 3 modulus  4). BBS is known to be
1893 very slow and only usable for cryptographic applications. 
1894
1895   
1896 The modulus operation is the most time consuming operation for current
1897 GPU cards.  So in order to obtain quite reasonable performances, it is
1898 required to use only modulus  on 32-bits integer numbers. Consequently
1899 $x_n^2$ need  to be inferior than $2^{32}$,  and thus the number $M$ must be
1900 inferior than $2^{16}$.  So in practice we can choose prime numbers around
1901 256 that are congruent to 3 modulus 4.  With 32-bits numbers, only the
1902 4 least significant bits of $x_n$ can be chosen (the maximum number of
1903 indistinguishable    bits    is    lesser    than   or    equals    to
1904 $log_2(log_2(M))$). In other words, to generate a  32-bits number, we need to use
1905 8 times  the BBS  algorithm with possibly different  combinations of  $M$. This
1906 approach is  not sufficient to be able to pass  all the tests of TestU01,
1907 as small values of  $M$ for the BBS  lead to
1908   small periods. So, in  order to add randomness  we have proceeded with
1909 the followings  modifications. 
1910 \begin{itemize}
1911 \item
1912 Firstly, we  define 16 arrangement arrays  instead of 2  (as described in
1913 Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of
1914 the  PRNG kernels. In  practice, the  selection of   combination
1915 arrays to be used is different for all the threads. It is determined
1916 by using  the three last bits  of two internal variables  used by BBS.
1917 %This approach  adds more randomness.   
1918 In Algorithm~\ref{algo:bbs_gpu},
1919 character  \& is for the  bitwise AND. Thus using  \&7 with  a number
1920 gives the last 3 bits, thus providing a number between 0 and 7.
1921 \item
1922 Secondly, after the  generation of the 8 BBS numbers  for each thread, we
1923 have a 32-bits number whose period is possibly quite small. So
1924 to add randomness,  we generate 4 more BBS numbers   to
1925 shift  the 32-bits  numbers, and  add up to  6 new  bits.  This  improvement is
1926 described  in Algorithm~\ref{algo:bbs_gpu}.  In  practice, the last 2 bits
1927 of the first new BBS number are  used to make a left shift of at most
1928 3 bits. The  last 3 bits of the  second new BBS number are  added to the
1929 strategy whatever the value of the first left shift. The third and the
1930 fourth new BBS  numbers are used similarly to apply  a new left shift
1931 and add 3 new bits.
1932 \item
1933 Finally, as  we use 8 BBS numbers  for each thread, the  storage of these
1934 numbers at the end of the  kernel is performed using a rotation. So,
1935 internal  variable for  BBS number  1 is  stored in  place  2, internal
1936 variable  for BBS  number 2  is  stored in  place 3,  ..., and finally, internal
1937 variable for BBS number 8 is stored in place 1.
1938 \end{itemize}
1939
1940 \begin{algorithm}
1941 \begin{small}
1942 \KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
1943 in global memory\;
1944 NumThreads: Number of threads\;
1945 array\_comb: 2D Arrays containing 16 combinations (in first dimension)  of size combination\_size (in second dimension)\;
1946 array\_shift[4]=\{0,1,3,7\}\;
1947 }
1948
1949 \KwOut{NewNb: array containing random numbers in global memory}
1950 \If{threadIdx is concerned} {
1951   retrieve data from InternalVarBBSArray[threadIdx] in local variables including shared memory and x\;
1952   we consider that bbs1 ... bbs8 represent the internal states of the 8 BBS numbers\;
1953   offset = threadIdx\%combination\_size\;
1954   o1 = threadIdx-offset+array\_comb[bbs1\&7][offset]\;
1955   o2 = threadIdx-offset+array\_comb[8+bbs2\&7][offset]\;
1956   \For{i=1 to n} {
1957     t$<<$=4\;
1958     t|=BBS1(bbs1)\&15\;
1959     ...\;
1960     t$<<$=4\;
1961     t|=BBS8(bbs8)\&15\;
1962     \tcp{two new shifts}
1963     shift=BBS3(bbs3)\&3\;
1964     t$<<$=shift\;
1965     t|=BBS1(bbs1)\&array\_shift[shift]\;
1966     shift=BBS7(bbs7)\&3\;
1967     t$<<$=shift\;
1968     t|=BBS2(bbs2)\&array\_shift[shift]\;
1969     t=t\textasciicircum  shmem[o1]\textasciicircum     shmem[o2]\;
1970     shared\_mem[threadIdx]=t\;
1971     x = x\textasciicircum   t\;
1972
1973     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1974   }
1975   store internal variables in InternalVarXorLikeArray[threadIdx] using a rotation\;
1976 }
1977 \end{small}
1978 \caption{main kernel for the BBS based PRNG GPU}
1979 \label{algo:bbs_gpu}
1980 \end{algorithm}
1981
1982 In Algorithm~\ref{algo:bbs_gpu}, $n$ is for  the quantity of random numbers that
1983 a thread has to  generate.  The operation t<<=4 performs a left  shift of 4 bits
1984 on the variable  $t$ and stores the result in  $t$, and $BBS1(bbs1)\&15$ selects
1985 the last  four bits  of the  result of $BBS1$.   Thus an  operation of  the form
1986 $t<<=4; t|=BBS1(bbs1)\&15\;$  realizes in $t$ a  left shift of 4  bits, and then
1987 puts the 4 last bits of $BBS1(bbs1)$  in the four last positions of $t$.  Let us
1988 remark that the initialization $t$ is not a  necessity as we fill it 4 bits by 4
1989 bits, until  having obtained 32-bits.  The  two last new shifts  are realized in
1990 order to enlarge the small periods of  the BBS used here, to introduce a kind of
1991 variability.  In these operations, we make twice a left shift of $t$ of \emph{at
1992   most}  3 bits,  represented by  \texttt{shift} in  the algorithm,  and  we put
1993 \emph{exactly} the \texttt{shift}  last bits from a BBS  into the \texttt{shift}
1994 last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
1995 correspondence between the  shift and the number obtained  with \texttt{shift} 1
1996 to make the \texttt{and} operation is used. For example, with a left shift of 0,
1997 we  make an  and operation  with 0,  with  a left  shift of  3, we  make an  and
1998 operation with 7 (represented by 111 in binary mode).
1999
2000 It should  be noticed that this generator has once more the form $x^{n+1} = x^n \oplus S^n$,
2001 where $S^n$ is referred in this algorithm as $t$: each iteration of this
2002 PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
2003 by secure bits produced by the BBS generator, and thus, due to
2004 Proposition~\ref{cryptopreuve}, the resulted PRNG is 
2005 cryptographically secure.
2006
2007 As stated before, even if the proposed PRNG is cryptocaphically
2008 secure, it does not mean that such a generator
2009 can be used as described here when attacks are
2010 awaited. The problem is to determine the minimum 
2011 time required for an attacker, with a given 
2012 computational power, to predict under a probability
2013 lower than 0.5 the $n+1$th bit, knowing the $n$
2014 previous ones. The proposed GPU generator will be
2015 useful in a security context, at least in some 
2016 situations where a secret protected by a pseudorandom
2017 keystream is rapidly obsolete, if this time to 
2018 predict the next bit is large enough when compared
2019 to both the generation and transmission times.
2020 It is true that the prime numbers used in the last
2021 section are very small compared to up-to-date 
2022 security recommendations. However the attacker has not
2023 access to each BBS, but to the output produced 
2024 by Algorithm~\ref{algo:bbs_gpu}, which is far
2025 more complicated than a simple BBS. Indeed, to
2026 determine if this cryptographically secure PRNG
2027 on GPU can be useful in security context with the 
2028 proposed parameters, or if it is only a very fast
2029 and statistically perfect generator on GPU, its
2030 $(T,\varepsilon)-$security must be determined, and
2031 a formulation similar to Eq.\eqref{mesureConcrete}
2032 must be established. The authors
2033 hope to achieve this difficult task in a future
2034 work.
2035
2036
2037 \subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
2038 \label{Blum-Goldwasser}
2039 We finish this research work by giving some thoughts about the use of
2040 the proposed PRNG in an asymmetric cryptosystem.
2041 This first approach will be further investigated in a future work.
2042
2043 \subsubsection{Recalls of the Blum-Goldwasser Probabilistic Cryptosystem}
2044
2045 The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm 
2046 proposed in 1984~\cite{Blum:1985:EPP:19478.19501}.  The encryption algorithm 
2047 implements a XOR-based stream cipher using the BBS PRNG, in order to generate 
2048 the keystream. Decryption is done by obtaining the initial seed thanks to
2049 the final state of the BBS generator and the secret key, thus leading to the
2050  reconstruction of the keystream.
2051
2052 The key generation consists in generating two prime numbers $(p,q)$, 
2053 randomly and independently of each other, that are
2054  congruent to 3 mod 4, and to compute the modulus $N=pq$.
2055 The public key is $N$, whereas the secret key is the factorization $(p,q)$.
2056
2057
2058 Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Alice:
2059 \begin{enumerate}
2060 \item Bob picks an integer $r$ randomly in the interval $\llbracket 1,N\rrbracket$ and computes $x_0 = r^2~mod~N$.
2061 \item He uses the BBS to generate the keystream of $L$ pseudorandom bits $(b_0, \dots, b_{L-1})$, as follows. For $i=0$ to $L-1$,
2062 \begin{itemize}
2063 \item $i=0$.
2064 \item While $i \leqslant L-1$:
2065 \begin{itemize}
2066 \item Set $b_i$ equal to the least-significant\footnote{As signaled previously, BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
2067 \item $i=i+1$,
2068 \item $x_i = (x_{i-1})^2~mod~N.$
2069 \end{itemize}
2070 \end{itemize}
2071 \item The ciphertext is computed by XORing the plaintext bits $m$ with the keystream: $ c = (c_0, \dots, c_{L-1}) = m \oplus  b$. This ciphertext is $[c, y]$, where $y=x_{0}^{2^{L}}~mod~N.$
2072 \end{enumerate}
2073
2074
2075 When Alice receives $\left[(c_0, \dots, c_{L-1}), y\right]$, she can recover $m$ as follows:
2076 \begin{enumerate}
2077 \item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$.
2078 \item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$.
2079 \item She recomputes the bit-vector $b$ by using BBS and $x_0$.
2080 \item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus  b$.
2081 \end{enumerate}
2082
2083
2084 \subsubsection{Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser}
2085
2086 We propose to adapt the Blum-Goldwasser protocol as follows. 
2087 Let $\mathsf{N} = \lfloor log(log(N)) \rfloor$ be the number of bits that can
2088 be obtained securely with the BBS generator using the public key $N$ of Alice.
2089 Alice will pick randomly $S^0$ in $\llbracket 0, 2^{\mathsf{N}-1}\rrbracket$ too, and
2090 her new public key will be $(S^0, N)$.
2091
2092 To encrypt his message, Bob will compute
2093 %%RAPH : ici, j'ai mis un simple $
2094 \begin{equation*}
2095 c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.
2096  \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)
2097 \end{equation*}
2098 instead of $$\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right).$$ 
2099
2100 The same decryption stage as in Blum-Goldwasser leads to the sequence 
2101 $$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right).$$
2102 Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
2103 By doing so, the proposed generator is used in place of BBS, leading to
2104 the inheritance of all the properties presented in this paper.
2105
2106 \section{Conclusion}
2107
2108
2109 In  this  paper, a formerly proposed PRNG based on chaotic iterations
2110 has been generalized to improve its speed. It has been proven to be
2111 chaotic according to Devaney.
2112 Efficient implementations on  GPU using xor-like  PRNGs as input generators
2113 have shown that a very large quantity of pseudorandom numbers can be generated per second (about
2114 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01,
2115 namely the BigCrush.
2116 Furthermore, we have shown that when the inputted generator is cryptographically
2117 secure, then it is the case too for the PRNG we propose, thus leading to
2118 the possibility of developping fast and secure PRNGs using the GPU architecture.
2119 An improvement of the Blum-Goldwasser cryptosystem, making it 
2120 behave chaotically, has finally been proposed. 
2121
2122 In future  work we plan to extend this research, building a parallel PRNG for  clusters or
2123 grid computing. Topological properties of the various proposed generators will be investigated,
2124 and the use of other categories of PRNGs as input will be studied too. The improvement
2125 of Blum-Goldwasser will be deepened.
2126 \begin{color}{red}
2127 Another aspect to consider might be different accelerator-based systems like 
2128 Intel Xeon Phi cards and speed measurements using such cards: as heterogeneity of
2129 supercomputers tends to increase using other accelerators than GPGPUs,
2130 a Xeon Phi solution might be interesting to investigate.
2131 \end{color}
2132  Finally, we
2133 will try to enlarge the quantity of pseudorandom numbers generated per second either
2134 in a simulation context or in a cryptographic one.
2135
2136
2137
2138 \bibliographystyle{plain} 
2139 \bibliography{mabase}
2140 \end{document}