]> AND Private Git Repository - prng_gpu.git/blob - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ada74d4d9230ef7321b78df4bc8084b3d1fcd26e
[prng_gpu.git] / prng_gpu.tex
1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
4 \usepackage{fullpage}
5 \usepackage{fancybox}
6 \usepackage{amsmath}
7 \usepackage{amscd}
8 \usepackage{moreverb}
9 \usepackage{commath}
10 \usepackage{algorithm2e}
11 \usepackage{listings}
12 \usepackage[standard]{ntheorem}
13
14 % Pour mathds : les ensembles IR, IN, etc.
15 \usepackage{dsfont}
16
17 % Pour avoir des intervalles d'entiers
18 \usepackage{stmaryrd}
19
20 \usepackage{graphicx}
21 % Pour faire des sous-figures dans les figures
22 \usepackage{subfigure}
23
24 \usepackage{color}
25
26 \newtheorem{notation}{Notation}
27
28 \newcommand{\X}{\mathcal{X}}
29 \newcommand{\Go}{G_{f_0}}
30 \newcommand{\B}{\mathds{B}}
31 \newcommand{\N}{\mathds{N}}
32 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
33 \let\sur=\overline
34
35 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
36
37 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
38 \begin{document}
39
40 \author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
41 Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
42    
43 \maketitle
44
45 \begin{abstract}
46 In this paper we present a new pseudorandom number generator (PRNG) on
47 graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
48 is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
49 implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
50 battery of tests in TestU01.  Experiments show that this PRNG can generate
51 about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
52 cards.
53 It is finally established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
54 secure.
55
56
57 \end{abstract}
58
59 \section{Introduction}
60
61 Randomness is of importance in many fields as scientific simulations or cryptography. 
62 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
63 called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
64 process having all the characteristics of a random noise, called a truly random number
65 generator (TRNG). 
66 In this paper, we focus on reproducible generators, useful for instance in
67 Monte-Carlo based simulators or in several cryptographic schemes.
68 These domains need PRNGs that are statistically irreproachable. 
69 On some fields as in numerical simulations, speed is a strong requirement
70 that is usually attained by using parallel architectures. In that case,
71 a recurrent problem is that a deflate of the statistical qualities is often
72 reported, when the parallelization of a good PRNG is realized.
73 This is why ad-hoc PRNGs for each possible architecture must be found to
74 achieve both speed and randomness.
75 On the other side, speed is not the main requirement in cryptography: the great
76 need is to define \emph{secure} generators being able to withstand malicious
77 attacks. Roughly speaking, an attacker should not be able in practice to make 
78 the distinction between numbers obtained with the secure generator and a true random
79 sequence. 
80 Finally, a small part of the community working in this domain focus on a
81 third requirement, that is to define chaotic generators.
82 The main idea is to take benefits from a chaotic dynamical system to obtain a
83 generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
84 Their desire is to map a given chaotic dynamics into a sequence that seems random 
85 and unassailable due to chaos.
86 However, the chaotic maps used as a pattern are defined in the real line 
87 whereas computers deal with finite precision numbers.
88 This distortion leads to a deflation of both chaotic properties and speed.
89 Furthermore, authors of such chaotic generators often claim their PRNG
90 as secure due to their chaos properties, but there is no obvious relation
91 between chaos and security as it is understood in cryptography.
92 This is why the use of chaos for PRNG still remains marginal and disputable.
93
94 The authors' opinion is that topological properties of disorder, as they are
95 properly defined in the mathematical theory of chaos, can reinforce the quality
96 of a PRNG. But they are not substitutable for security or statistical perfection.
97 Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
98 one hand, a post-treatment based on a chaotic dynamical system can be applied
99 to a PRNG statistically deflective, in order to improve its statistical 
100 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
101 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
102 cryptographically secure one, in case where chaos can be of interest,
103 \emph{only if these last properties are not lost during
104 the proposed post-treatment}. Such an assumption is behind this research work.
105 It leads to the attempts to define a 
106 family of PRNGs that are chaotic while being fast and statistically perfect,
107 or cryptographically secure.
108 Let us finish this paragraph by noticing that, in this paper, 
109 statistical perfection refers to the ability to pass the whole 
110 {\it BigCrush} battery of tests, which is widely considered as the most
111 stringent statistical evaluation of a sequence claimed as random.
112 This battery can be found into the well-known TestU01 package.
113 Chaos, for its part, refers to the well-established definition of a
114 chaotic dynamical system proposed by Devaney~\cite{Devaney}.
115
116
117 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
118 as a chaotic dynamical system. Such a post-treatment leads to a new category of
119 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
120 family, and that the sequence obtained after this post-treatment can pass the
121 NIST, DieHARD, and TestU01 batteries of tests, even if the inputted generators
122 cannot.
123 The proposition of this paper is to improve widely the speed of the formerly
124 proposed generator, without any lack of chaos or statistical properties.
125 In particular, a version of this PRNG on graphics processing units (GPU)
126 is proposed.
127 Although GPU was initially designed  to accelerate
128 the manipulation of  images, they are nowadays commonly  used in many scientific
129 applications. Therefore,  it is important  to be able to  generate pseudorandom
130 numbers inside a GPU when a scientific application runs in it. This remark
131 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
132 Such device
133 allows us to generated almost 20 billions of pseudorandom numbers per second.
134 Last, but not least, we show that the proposed post-treatment preserves the
135 cryptographical security of the inputted PRNG, when this last has such a 
136 property.
137
138 The remainder of this paper  is organized as follows. In Section~\ref{section:related
139   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
140   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
141   and on an iteration process called ``chaotic
142 iterations'' on which the post-treatment is based. 
143 Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
144 Section~\ref{sec:efficient    prng}   presents   an   efficient
145 implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient prng
146   gpu}   describes   the  GPU   implementation. 
147 Such generators are experimented in 
148 Section~\ref{sec:experiments}.
149 We show in Section~\ref{sec:security analysis} that, if the inputted
150 generator is cryptographically secure, then it is the case too for the
151 generator provided by the post-treatment.
152 Such a proof leads to the proposition of a cryptographically secure and
153 chaotic generator on GPU based on the famous Blum Blum Shum
154 in Section~\ref{sec:CSGPU}.
155 This research work ends by a conclusion section, in which the contribution is
156 summarized and intended future work is presented.
157
158
159
160
161 \section{Related works on GPU based PRNGs}
162 \label{section:related works}
163
164 Numerous research works on defining GPU based PRNGs have yet been proposed  in the
165 literature, so that completeness is impossible.
166 This is why authors of this document only give reference to the most significant attempts 
167 in this domain, from their subjective point of view. 
168 The  quantity of pseudorandom numbers generated per second is mentioned here 
169 only when the information is given in the related work. 
170 A million numbers  per second will be simply written as
171 1MSample/s whereas a billion numbers per second is 1GSample/s.
172
173 In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
174 with no  requirement to an high  precision  integer   arithmetic  or to any bitwise
175 operations. Authors can   generate  about
176 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
177 However, there is neither a mention of statistical tests nor any proof of
178 chaos or cryptography in this document.
179
180 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
181 based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
182 PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
183 GPU. Performance of  the GPU versions are far better than  those obtained with a
184 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
185 However the evaluations of the proposed PRNGs are only statistical ones.
186
187
188 Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
189 PRNGs on  different computing architectures: CPU,  field-programmable gate array
190 (FPGA), massively parallel  processors, and GPU. This study is of interest, because
191 the  performance  of the  same  PRNGs on  different architectures are compared. 
192 FPGA appears as  the  fastest  and the most
193 efficient architecture, providing the fastest number of generated pseudorandom numbers
194 per joule. 
195 However, we can notice that authors can ``only'' generate between 11 and 16GSamples/s
196 with a GTX 280  GPU, which should be compared with
197 the results presented in this document.
198 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
199 able to pass the {\it Crush} battery, which is very easy compared to the {\it Big Crush} one.
200
201 Lastly, Cuda  has developed  a  library for  the  generation of  pseudorandom numbers  called
202 Curand~\cite{curand11}.        Several       PRNGs        are       implemented, among
203 other things 
204 Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. The  tests reported show that
205 their  fastest version provides  15GSamples/s on  the new  Fermi C2050  card. 
206 But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
207 \newline
208 \newline
209 We can finally remark that, to the best of our knowledge, no GPU implementation have been proven to be chaotic, and the cryptographically secure property is surprisingly never regarded.
210
211 \section{Basic Recalls}
212 \label{section:BASIC RECALLS}
213
214 This section is devoted to basic definitions and terminologies in the fields of
215 topological chaos and chaotic iterations.
216 \subsection{Devaney's Chaotic Dynamical Systems}
217
218 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
219 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
220 is for the $k^{th}$ composition of a function $f$. Finally, the following
221 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
222
223
224 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
225 \mathcal{X} \rightarrow \mathcal{X}$.
226
227 \begin{definition}
228 $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
229 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
230 \varnothing$.
231 \end{definition}
232
233 \begin{definition}
234 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
235 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
236 \end{definition}
237
238 \begin{definition}
239 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
240 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
241 any neighborhood of $x$ contains at least one periodic point (without
242 necessarily the same period).
243 \end{definition}
244
245
246 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
247 $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
248 topologically transitive.
249 \end{definition}
250
251 The chaos property is strongly linked to the notion of ``sensitivity'', defined
252 on a metric space $(\mathcal{X},d)$ by:
253
254 \begin{definition}
255 \label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions}
256 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
257 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
258 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
259
260 $\delta$ is called the \emph{constant of sensitivity} of $f$.
261 \end{definition}
262
263 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
264 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
265 sensitive dependence on initial conditions (this property was formerly an
266 element of the definition of chaos). To sum up, quoting Devaney
267 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
268 sensitive dependence on initial conditions. It cannot be broken down or
269 simplified into two subsystems which do not interact because of topological
270 transitivity. And in the midst of this random behavior, we nevertheless have an
271 element of regularity''. Fundamentally different behaviors are consequently
272 possible and occur in an unpredictable way.
273
274
275
276 \subsection{Chaotic Iterations}
277 \label{sec:chaotic iterations}
278
279
280 Let us consider  a \emph{system} with a finite  number $\mathsf{N} \in
281 \mathds{N}^*$ of elements  (or \emph{cells}), so that each  cell has a
282 Boolean  \emph{state}. Having $\mathsf{N}$ Boolean values for these
283  cells  leads to the definition of a particular \emph{state  of the
284 system}. A sequence which  elements belong to $\llbracket 1;\mathsf{N}
285 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
286 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
287
288 \begin{definition}
289 \label{Def:chaotic iterations}
290 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
291 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
292 a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
293 \emph{chaotic      iterations}     are     defined      by     $x^0\in
294 \mathds{B}^{\mathsf{N}}$ and
295 \begin{equation}
296 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
297 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
298 \begin{array}{ll}
299   x_i^{n-1} &  \text{ if  }S^n\neq i \\
300   \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
301 \end{array}\right.
302 \end{equation}
303 \end{definition}
304
305 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
306 \textquotedblleft  iterated\textquotedblright .  Note  that in  a more
307 general  formulation,  $S^n$  can   be  a  subset  of  components  and
308 $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
309 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
310 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
311 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
312 priori} no link with the mathematical theory of chaos, presented above.
313
314
315 Let us now recall how to define a suitable metric space where chaotic iterations
316 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
317
318 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
319 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
320 \begin{equation}
321 \begin{array}{lrll}
322 F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
323 \longrightarrow & \mathds{B}^{\mathsf{N}} \\
324 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
325 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
326 \end{array}%
327 \end{equation}%
328 \noindent where + and . are the Boolean addition and product operations.
329 Consider the phase space:
330 \begin{equation}
331 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
332 \mathds{B}^\mathsf{N},
333 \end{equation}
334 \noindent and the map defined on $\mathcal{X}$:
335 \begin{equation}
336 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
337 \end{equation}
338 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
339 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
340 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
341 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
342 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
343 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
344 \begin{equation}
345 \left\{
346 \begin{array}{l}
347 X^0 \in \mathcal{X} \\
348 X^{k+1}=G_{f}(X^k).%
349 \end{array}%
350 \right.
351 \end{equation}%
352
353 With this formulation, a shift function appears as a component of chaotic
354 iterations. The shift function is a famous example of a chaotic
355 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
356 chaotic. 
357 To study this claim, a new distance between two points $X = (S,E), Y =
358 (\check{S},\check{E})\in
359 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
360 \begin{equation}
361 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
362 \end{equation}
363 \noindent where
364 \begin{equation}
365 \left\{
366 \begin{array}{lll}
367 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
368 }\delta (E_{k},\check{E}_{k})}, \\
369 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
370 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
371 \end{array}%
372 \right.
373 \end{equation}
374
375
376 This new distance has been introduced to satisfy the following requirements.
377 \begin{itemize}
378 \item When the number of different cells between two systems is increasing, then
379 their distance should increase too.
380 \item In addition, if two systems present the same cells and their respective
381 strategies start with the same terms, then the distance between these two points
382 must be small because the evolution of the two systems will be the same for a
383 while. Indeed, the two dynamical systems start with the same initial condition,
384 use the same update function, and as strategies are the same for a while, then
385 components that are updated are the same too.
386 \end{itemize}
387 The distance presented above follows these recommendations. Indeed, if the floor
388 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
389 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
390 measure of the differences between strategies $S$ and $\check{S}$. More
391 precisely, this floating part is less than $10^{-k}$ if and only if the first
392 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
393 nonzero, then the $k^{th}$ terms of the two strategies are different.
394 The impact of this choice for a distance will be investigate at the end of the document.
395
396 Finally, it has been established in \cite{guyeux10} that,
397
398 \begin{proposition}
399 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
400 the metric space $(\mathcal{X},d)$.
401 \end{proposition}
402
403 The chaotic property of $G_f$ has been firstly established for the vectorial
404 Boolean negation $f(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
405 introduced the notion of asynchronous iteration graph recalled bellow.
406
407 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
408 {\emph{asynchronous iteration graph}} associated with $f$ is the
409 directed graph $\Gamma(f)$ defined by: the set of vertices is
410 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
411 $i\in \llbracket1;\mathsf{N}\rrbracket$,
412 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
413 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
414 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
415 strategy $s$ such that the parallel iteration of $G_f$ from the
416 initial point $(s,x)$ reaches the point $x'$.
417
418 We have finally proven in \cite{bcgr11:ip} that,
419
420
421 \begin{theorem}
422 \label{Th:Caractérisation   des   IC   chaotiques}  
423 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
424 if and only if $\Gamma(f)$ is strongly connected.
425 \end{theorem}
426
427 This result of chaos has lead us to study the possibility to build a
428 pseudorandom number generator (PRNG) based on the chaotic iterations. 
429 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
430 \times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
431 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
432 during implementations (due to the discrete nature of $f$). It is as if
433 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
434 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance).
435
436 \section{Application to pseudorandomness}
437 \label{sec:pseudorandom}
438 \subsection{A First pseudorandom Number Generator}
439
440 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
441 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
442 leading thus to a new PRNG that improves the statistical properties of each
443 generator taken alone. Furthermore, our generator 
444 possesses various chaos properties that none of the generators used as input
445 present.
446
447 \begin{algorithm}[h!]
448 %\begin{scriptsize}
449 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
450 ($n$ bits)}
451 \KwOut{a configuration $x$ ($n$ bits)}
452 $x\leftarrow x^0$\;
453 $k\leftarrow b + \textit{XORshift}(b)$\;
454 \For{$i=0,\dots,k$}
455 {
456 $s\leftarrow{\textit{XORshift}(n)}$\;
457 $x\leftarrow{F_f(s,x)}$\;
458 }
459 return $x$\;
460 %\end{scriptsize}
461 \caption{PRNG with chaotic functions}
462 \label{CI Algorithm}
463 \end{algorithm}
464
465 \begin{algorithm}[h!]
466 \KwIn{the internal configuration $z$ (a 32-bit word)}
467 \KwOut{$y$ (a 32-bit word)}
468 $z\leftarrow{z\oplus{(z\ll13)}}$\;
469 $z\leftarrow{z\oplus{(z\gg17)}}$\;
470 $z\leftarrow{z\oplus{(z\ll5)}}$\;
471 $y\leftarrow{z}$\;
472 return $y$\;
473 \medskip
474 \caption{An arbitrary round of \textit{XORshift} algorithm}
475 \label{XORshift}
476 \end{algorithm}
477
478
479
480
481
482 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
483 It takes as input: a function $f$;
484 an integer $b$, ensuring that the number of executed iterations is at least $b$
485 and at most $2b+1$; and an initial configuration $x^0$.
486 It returns the new generated configuration $x$.  Internally, it embeds two
487 \textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
488 uniformly distributed
489 into $\llbracket 1 ; k \rrbracket$.
490 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
491 which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
492 with a bit shifted version of it. This PRNG, which has a period of
493 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used
494 in our PRNG to compute the strategy length and the strategy elements.
495
496
497 We have proven in \cite{bcgr11:ip} that,
498 \begin{theorem}
499   Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
500   iteration graph, $\check{M}$ its adjacency
501   matrix and $M$ a $n\times n$ matrix defined as in the previous lemma.
502   If $\Gamma(f)$ is strongly connected, then 
503   the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
504   a law that tends to the uniform distribution 
505   if and only if $M$ is a double stochastic matrix.
506 \end{theorem} 
507
508 This former generator as successively passed various batteries of statistical tests, as the NIST tests~\cite{bcgr11:ip}.
509
510 \subsection{Improving the Speed of the Former Generator}
511
512 Instead of updating only one cell at each iteration, we can try to choose a
513 subset of components and to update them together. Such an attempt leads
514 to a kind of merger of the two sequences used in Algorithm 
515 \ref{CI Algorithm}. When the updating function is the vectorial negation,
516 this algorithm can be rewritten as follows:
517
518 \begin{equation}
519 \left\{
520 \begin{array}{l}
521 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
522 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
523 \end{array}
524 \right.
525 \label{equation Oplus}
526 \end{equation}
527 where $\oplus$ is for the bitwise exclusive or between two integers. 
528 This rewritten can be understood as follows. The $n-$th term $S^n$ of the
529 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
530 the list of cells to update in the state $x^n$ of the system (represented
531 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th 
532 component of this state (a binary digit) changes if and only if the $k-$th 
533 digit in the binary decomposition of $S^n$ is 1.
534
535 The single basic component presented in Eq.~\ref{equation Oplus} is of 
536 ordinary use as a good elementary brick in various PRNGs. It corresponds
537 to the following discrete dynamical system in chaotic iterations:
538
539 \begin{equation}
540 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
541 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
542 \begin{array}{ll}
543   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
544   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
545 \end{array}\right.
546 \label{eq:generalIC}
547 \end{equation}
548 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
549 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
550 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
551 decomposition of $S^n$ is 1. Such chaotic iterations are more general
552 than the ones presented in Definition \ref{Def:chaotic iterations} for 
553 the fact that, instead of updating only one term at each iteration,
554 we select a subset of components to change.
555
556
557 Obviously, replacing Algorithm~\ref{CI Algorithm} by 
558 Equation~\ref{equation Oplus}, possible when the iteration function is
559 the vectorial negation, leads to a speed improvement. However, proofs
560 of chaos obtained in~\cite{bg10:ij} have been established
561 only for chaotic iterations of the form presented in Definition 
562 \ref{Def:chaotic iterations}. The question is now to determine whether the
563 use of more general chaotic iterations to generate pseudorandom numbers 
564 faster, does not deflate their topological chaos properties.
565
566 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
567 \label{deuxième def}
568 Let us consider the discrete dynamical systems in chaotic iterations having 
569 the general form:
570
571 \begin{equation}
572 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
573 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
574 \begin{array}{ll}
575   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
576   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
577 \end{array}\right.
578 \label{general CIs}
579 \end{equation}
580
581 In other words, at the $n^{th}$ iteration, only the cells whose id is
582 contained into the set $S^{n}$ are iterated.
583
584 Let us now rewrite these general chaotic iterations as usual discrete dynamical
585 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
586 is required in order to study the topological behavior of the system.
587
588 Let us introduce the following function:
589 \begin{equation}
590 \begin{array}{cccc}
591  \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
592          & (i,X) & \longmapsto  & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X,  \end{array}\right.
593 \end{array} 
594 \end{equation}
595 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
596
597 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
598 \begin{equation}
599 \begin{array}{lrll}
600 F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} &
601 \longrightarrow & \mathds{B}^{\mathsf{N}} \\
602 & (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi
603 (j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
604 \end{array}%
605 \end{equation}%
606 where + and . are the Boolean addition and product operations, and $\overline{x}$ 
607 is the negation of the Boolean $x$.
608 Consider the phase space:
609 \begin{equation}
610 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
611 \mathds{B}^\mathsf{N},
612 \end{equation}
613 \noindent and the map defined on $\mathcal{X}$:
614 \begin{equation}
615 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
616 \end{equation}
617 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
618 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
619 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function} 
620 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$. 
621 Then the general chaotic iterations defined in Equation \ref{general CIs} can 
622 be described by the following discrete dynamical system:
623 \begin{equation}
624 \left\{
625 \begin{array}{l}
626 X^0 \in \mathcal{X} \\
627 X^{k+1}=G_{f}(X^k).%
628 \end{array}%
629 \right.
630 \end{equation}%
631
632 Another time, a shift function appears as a component of these general chaotic 
633 iterations. 
634
635 To study the Devaney's chaos property, a distance between two points 
636 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
637 Let us introduce:
638 \begin{equation}
639 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
640 \label{nouveau d}
641 \end{equation}
642 \noindent where
643 \begin{equation}
644 \left\{
645 \begin{array}{lll}
646 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
647 }\delta (E_{k},\check{E}_{k})}\textrm{ is another time the Hamming distance}, \\
648 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
649 \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
650 \end{array}%
651 \right.
652 \end{equation}
653 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
654 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
655
656
657 \begin{proposition}
658 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
659 \end{proposition}
660
661 \begin{proof}
662  $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
663 too, thus $d$ will be a distance as sum of two distances.
664  \begin{itemize}
665 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then 
666 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then 
667 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
668  \item $d_s$ is symmetric 
669 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
670 of the symmetric difference. 
671 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$, 
672 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$, 
673 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
674 inequality is obtained.
675  \end{itemize}
676 \end{proof}
677
678
679 Before being able to study the topological behavior of the general 
680 chaotic iterations, we must firstly establish that:
681
682 \begin{proposition}
683  For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on 
684 $\left( \mathcal{X},d\right)$.
685 \end{proposition}
686
687
688 \begin{proof}
689 We use the sequential continuity.
690 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
691 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
692 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
693 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
694 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
695 sequences).\newline
696 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
697 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
698 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
699 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
700 cell will change its state:
701 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
702
703 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
704 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
705 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
706 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
707
708 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
709 identical and strategies $S^n$ and $S$ start with the same first term.\newline
710 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
711 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
712 \noindent We now prove that the distance between $\left(
713 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
714 0. Let $\varepsilon >0$. \medskip
715 \begin{itemize}
716 \item If $\varepsilon \geqslant 1$, we see that distance
717 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
718 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
719 \medskip
720 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
721 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
722 \begin{equation*}
723 \exists n_{2}\in \mathds{N},\forall n\geqslant
724 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
725 \end{equation*}%
726 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
727 \end{itemize}
728 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
729 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
730 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
731 10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline
732 In conclusion,
733 $$
734 \forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}%
735 ,\forall n\geqslant N_{0},
736  d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
737 \leqslant \varepsilon .
738 $$
739 $G_{f}$ is consequently continuous.
740 \end{proof}
741
742
743 It is now possible to study the topological behavior of the general chaotic
744 iterations. We will prove that,
745
746 \begin{theorem}
747 \label{t:chaos des general}
748  The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
749 the Devaney's property of chaos.
750 \end{theorem}
751
752 Let us firstly prove the following lemma.
753
754 \begin{lemma}[Strong transitivity]
755 \label{strongTrans}
756  For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
757 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
758 \end{lemma}
759
760 \begin{proof}
761  Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
762 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
763 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
764 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
765 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
766 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
767 the form $(S',E')$ where $E'=E$ and $S'$ starts with 
768 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
769 \begin{itemize}
770  \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
771  \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
772 \end{itemize}
773 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
774 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
775 claimed in the lemma.
776 \end{proof}
777
778 We can now prove the Theorem~\ref{t:chaos des general}...
779
780 \begin{proof}[Theorem~\ref{t:chaos des general}]
781 Firstly, strong transitivity implies transitivity.
782
783 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
784 prove that $G_f$ is regular, it is sufficient to prove that
785 there exists a strategy $\tilde S$ such that the distance between
786 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
787 $(\tilde S,E)$ is a periodic point.
788
789 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
790 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
791 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
792 and $t_2\in\mathds{N}$ such
793 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
794
795 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
796 of $S$ and the first $t_2$ terms of $S'$: $$\tilde
797 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
798 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
799 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
800 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
801 have $d((S,E),(\tilde S,E))<\epsilon$.
802 \end{proof}
803
804
805
806 \section{Efficient PRNG based on Chaotic Iterations}
807 \label{sec:efficient prng}
808
809 In  order to  implement efficiently  a PRNG  based on  chaotic iterations  it is
810 possible to improve  previous works [ref]. One solution  consists in considering
811 that the  strategy used contains all the  bits for which the  negation is
812 achieved out. Then in order to apply  the negation on these bits we can simply
813 apply the  xor operator between  the current number  and the strategy. In
814 order to obtain the strategy we also use a classical PRNG.
815
816 Here  is an  example with  16-bits numbers  showing how  the bitwise  operations
817 are
818 applied.  Suppose  that $x$ and the  strategy $S^i$ are defined  in binary mode.
819 Then the following table shows the result of $x$ xor $S^i$.
820 $$
821 \begin{array}{|cc|cccccccccccccccc|}
822 \hline
823 x      &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
824 \hline
825 S^i      &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
826 \hline
827 x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
828 \hline
829
830 \hline
831  \end{array}
832 $$
833
834
835
836
837
838 \lstset{language=C,caption={C code of the sequential chaotic iterations based
839 PRNG},label=algo:seqCIprng}
840 \begin{lstlisting}
841 unsigned int CIprng() {
842   static unsigned int x = 123123123;
843   unsigned long t1 = xorshift();
844   unsigned long t2 = xor128();
845   unsigned long t3 = xorwow();
846   x = x^(unsigned int)t1;
847   x = x^(unsigned int)(t2>>32);
848   x = x^(unsigned int)(t3>>32);
849   x = x^(unsigned int)t2;
850   x = x^(unsigned int)(t1>>32);
851   x = x^(unsigned int)t3;
852   return x;
853 }
854 \end{lstlisting}
855
856
857
858
859
860 In listing~\ref{algo:seqCIprng}  a sequential version of  our chaotic iterations
861 based PRNG is  presented.  The xor operator is  represented by \textasciicircum.
862 This  function uses  three classical  64-bits PRNG:  the  \texttt{xorshift}, the
863 \texttt{xor128}  and  the  \texttt{xorwow}.   In  the following,  we  call  them
864 xor-like PRNGSs.   These three PRNGs are  presented in~\cite{Marsaglia2003}.  As
865 each xor-like PRNG  used works with 64-bits and as our  PRNG works with 32-bits,
866 the use of \texttt{(unsigned int)} selects the 32 least significant bits whereas
867 \texttt{(unsigned int)(t3$>>$32)}  selects the 32 most significants  bits of the
868 variable \texttt{t}.   So to produce a  random number realizes  6 xor operations
869 with 6 32-bits  numbers produced by 3 64-bits PRNG.   This version successes the
870 BigCrush of the TestU01 battery~\cite{LEcuyerS07}.
871
872 \section{Efficient PRNGs based on chaotic iterations on GPU}
873 \label{sec:efficient prng gpu}
874
875 In  order to benefit  from computing  power of  GPU, a  program needs  to define
876 independent blocks of threads which  can be computed simultaneously. In general,
877 the larger the number of threads is,  the more local memory is used and the less
878 branching  instructions are  used (if,  while, ...),  the better  performance is
879 obtained  on  GPU.  So  with  algorithm  \ref{algo:seqCIprng}  presented in  the
880 previous section, it is possible to  build a similar program which computes PRNG
881 on   GPU.  In  the   CUDA~\cite{Nvid10}  environment,   threads  have   a  local
882 identificator, called \texttt{ThreadIdx} relative to the block containing them.
883
884
885 \subsection{Naive version for GPU}
886
887 From the CPU version, it is possible  to obtain a quite similar version for GPU.
888 The principe consists in assigning the computation of a PRNG as in sequential to
889 each thread  of the  GPU.  Of course,  it is  essential that the  three xor-like
890 PRNGs  used for  our computation  have different  parameters. So  we  chose them
891 randomly with  another PRNG. As the  initialisation is performed by  the CPU, we
892 have  chosen  to  use  the  ISAAC  PRNG~\cite{Jenkins96}  to  initalize  all  the
893 parameters for  the GPU version  of our PRNG.   The implementation of  the three
894 xor-like  PRNGs  is  straightforward  as  soon as  their  parameters  have  been
895 allocated in  the GPU memory.  Each xor-like PRNGs  used works with  an internal
896 number  $x$  which keeps  the  last  generated  random numbers.  Other  internal
897 variables  are   also  used   by  the  xor-like   PRNGs.  More   precisely,  the
898 implementation of the  xor128, the xorshift and the  xorwow respectively require
899 4, 5 and 6 unsigned long as internal variables.
900
901 \begin{algorithm}
902
903 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
904 PRNGs in global memory\;
905 NumThreads: Number of threads\;}
906 \KwOut{NewNb: array containing random numbers in global memory}
907 \If{threadIdx is concerned by the computation} {
908   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
909   \For{i=1 to n} {
910     compute a new PRNG as in Listing\ref{algo:seqCIprng}\;
911     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
912   }
913   store internal variables in InternalVarXorLikeArray[threadIdx]\;
914 }
915
916 \caption{main kernel for the chaotic iterations based PRNG GPU naive version}
917 \label{algo:gpu_kernel}
918 \end{algorithm}
919
920 Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of  PRNG using
921 GPU.  According  to the available  memory in the  GPU and the number  of threads
922 used simultenaously,  the number  of random numbers  that a thread  can generate
923 inside   a    kernel   is   limited,   i.e.    the    variable   \texttt{n}   in
924 algorithm~\ref{algo:gpu_kernel}. For example, if  $100,000$ threads are used and
925 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)}
926 then   the  memory   required   to  store   internals   variables  of   xor-like
927 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
928 and  random  number of  our  PRNG  is  equals to  $100,000\times  ((4+5+6)\times
929 2+(1+100))=1,310,000$ 32-bits numbers, i.e. about $52$Mb.
930
931 All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
932 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
933 upto $10$ millions.
934 \newline
935 \newline
936 {\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
937
938 \begin{remark}
939 Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
940 PRNGs, so this version is easily usable on a cluster of computer. The only thing
941 to ensure is to use a single ISAAC PRNG. For this, a simple solution consists in
942 using a master node for the initialization which computes the initial parameters
943 for all the differents nodes involves in the computation.
944 \end{remark}
945
946 \subsection{Improved version for GPU}
947
948 As GPU cards using CUDA have shared memory between threads of the same block, it
949 is possible  to use this  feature in order  to simplify the  previous algorithm,
950 i.e., using less  than 3 xor-like PRNGs. The solution  consists in computing only
951 one xor-like PRNG by thread, saving  it into shared memory and using the results
952 of some  other threads in the  same block of  threads. In order to  define which
953 thread uses the result of which other  one, we can use a permutation array which
954 contains  the indexes  of  all threads  and  for which  a  permutation has  been
955 performed.  In Algorithm~\ref{algo:gpu_kernel2}, 2 permutations arrays are used.
956 The    variable   \texttt{offset}    is    computed   using    the   value    of
957 \texttt{permutation\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
958 which represent the indexes of the  other threads for which the results are used
959 by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
960 PRNG is used, that is why both 32-bits parts are used.
961
962 This version also succeeds to the {\it BigCrush} batteries of tests.
963
964 \begin{algorithm}
965
966 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
967 in global memory\;
968 NumThreads: Number of threads\;
969 tab1, tab2: Arrays containing permutations of size permutation\_size\;}
970
971 \KwOut{NewNb: array containing random numbers in global memory}
972 \If{threadId is concerned} {
973   retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
974   offset = threadIdx\%permutation\_size\;
975   o1 = threadIdx-offset+tab1[offset]\;
976   o2 = threadIdx-offset+tab2[offset]\;
977   \For{i=1 to n} {
978     t=xor-like()\;
979     t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\;
980     shared\_mem[threadId]=t\;
981     x = x $\oplus$ t\;
982
983     store the new PRNG in NewNb[NumThreads*threadId+i]\;
984   }
985   store internal variables in InternalVarXorLikeArray[threadId]\;
986 }
987
988 \caption{main kernel for the chaotic iterations based PRNG GPU efficient
989 version}
990 \label{algo:gpu_kernel2}
991 \end{algorithm}
992
993 \subsection{Theoretical Evaluation of the Improved Version}
994
995 A run of Algorithm~\ref{algo:gpu_kernel2} consists in three operations having 
996 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
997 system of Eq.~\ref{eq:generalIC}. That is, three iterations of the general chaotic
998 iterations are realized between two stored values of the PRNG.
999 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
1000 we must guarantee that this dynamical system iterates on the space 
1001 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
1002 The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
1003 To prevent from any flaws of chaotic properties, we must check that each right 
1004 term, corresponding to terms of the strategies,  can possibly be equal to any
1005 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
1006
1007 Such a result is obvious for the two first lines, as for the xor-like(), all the
1008 integers belonging into its interval of definition can occur at each iteration.
1009 It can be easily stated for the two last lines by an immediate mathematical
1010 induction.
1011
1012 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1013 chaotic iterations presented previously, and for this reason, it satisfies the 
1014 Devaney's formulation of a chaotic behavior.
1015
1016 \section{Experiments}
1017 \label{sec:experiments}
1018
1019 Different experiments  have been  performed in order  to measure  the generation
1020 speed. We have used  a computer equiped with Tesla C1060 NVidia  GPU card and an
1021 Intel  Xeon E5530 cadenced  at 2.40  GHz for  our experiments  and we  have used
1022 another one  equipped with  a less performant  CPU and  a GeForce GTX  280. Both
1023 cards have 240 cores.
1024
1025 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  number of  random numbers
1026 generated per second with the xor-like based PRNG. In this figure, the optimized
1027 version use the {\it xor64} described in~\cite{Marsaglia2003}. The naive version
1028 use  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIprng}.   In
1029 order to obtain the optimal performance we removed the storage of random numbers
1030 in the GPU memory. This step is time consuming and slows down the random numbers
1031 generation.  Moreover, if one is  interested by applications that consume random
1032 numbers  directly   when  they  are  generated,  their   storage  are  completely
1033 useless. In this  figure we can see  that when the number of  threads is greater
1034 than approximately 30,000 upto 5 millions the number of random numbers generated
1035 per second  is almost constant.  With the  naive version, it is  between 2.5 and
1036 3GSample/s.   With  the  optimized   version,  it  is  approximately  equals  to
1037 20GSample/s. Finally  we can remark  that both GPU  cards are quite  similar. In
1038 practice,  the Tesla C1060  has more  memory than  the GTX  280 and  this memory
1039 should be of better quality.
1040
1041 \begin{figure}[htbp]
1042 \begin{center}
1043   \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
1044 \end{center}
1045 \caption{Number of random numbers generated per second with the xorlike based PRNG}
1046 \label{fig:time_xorlike_gpu}
1047 \end{figure}
1048
1049
1050 In  comparison,   Listing~\ref{algo:seqCIprng}  allows  us   to  generate  about
1051 138MSample/s with only one core of the Xeon E5530.
1052
1053
1054 In Figure~\ref{fig:time_bbs_gpu}  we highlight the performance  of the optimized
1055 BBS based  PRNG on GPU. Performances are  less important. On the  Tesla C1060 we
1056 obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
1057
1058 \begin{figure}[htbp]
1059 \begin{center}
1060   \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
1061 \end{center}
1062 \caption{Number of random numbers generated per second with the BBS based PRNG}
1063 \label{fig:time_bbs_gpu}
1064 \end{figure}
1065
1066 Both  these  experimentations allows  us  to conclude  that  it  is possible  to
1067 generate a  huge number of pseudorandom  numbers with the  xor-like version and
1068 about tens  times less with the BBS  based version. The former  version has only
1069 chaotic properties whereas the latter also has cryptographically properties.
1070
1071
1072 %% \section{Cryptanalysis of the Proposed PRNG}
1073
1074
1075 %% Mettre ici la preuve de PCH
1076
1077 %\section{The relativity of disorder}
1078 %\label{sec:de la relativité du désordre}
1079
1080 %In the next two sections, we investigate the impact of the choices that have
1081 %lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
1082
1083 %\subsection{Impact of the topology's finenesse}
1084
1085 %Let us firstly introduce the following notations.
1086
1087 %\begin{notation}
1088 %$\mathcal{X}_\tau$ will denote the topological space
1089 %$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
1090 %of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
1091 %$\mathcal{V} (x)$, if there is no ambiguity).
1092 %\end{notation}
1093
1094
1095
1096 %\begin{theorem}
1097 %\label{Th:chaos et finesse}
1098 %Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
1099 %$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
1100 %both for $\tau$ and $\tau'$.
1101
1102 %If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
1103 %$(\mathcal{X}_\tau,f)$ is chaotic too.
1104 %\end{theorem}
1105
1106 %\begin{proof}
1107 %Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
1108
1109 %Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
1110 %\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
1111 %can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
1112 %\varnothing$. Consequently, $f$ is $\tau-$transitive.
1113
1114 %Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
1115 %all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
1116 %periodic point for $f$ into $V$.
1117
1118 %Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
1119 %of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
1120
1121 %But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
1122 %\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
1123 %periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
1124 %proven. 
1125 %\end{proof}
1126
1127 %\subsection{A given system can always be claimed as chaotic}
1128
1129 %Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
1130 %Then this function is chaotic (in a certain way):
1131
1132 %\begin{theorem}
1133 %Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
1134 %at least a fixed point.
1135 %Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
1136 %topology on $\X$.
1137 %\end{theorem}
1138
1139
1140 %\begin{proof}
1141 %$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
1142 %\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
1143 %\varnothing$.
1144 %As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
1145 %an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
1146 %instance, $n=0$ is appropriate.
1147
1148 %Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
1149 %\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
1150 %regular, and the result is established.
1151 %\end{proof}
1152
1153
1154
1155
1156 %\subsection{A given system can always be claimed as non-chaotic}
1157
1158 %\begin{theorem}
1159 %Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
1160 %If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
1161 %(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
1162 %\end{theorem}
1163
1164 %\begin{proof}
1165 %Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
1166 %f\right)$ is both transitive and regular.
1167
1168 %Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
1169 %contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
1170 %f\right)$ is regular. Then $x$ must be a periodic point of $f$.
1171
1172 %Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
1173 %because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
1174 %\mathcal{X}, y \notin I_x$.
1175
1176 %As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
1177 %sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
1178 %\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
1179 %\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
1180 %\end{proof}
1181
1182
1183
1184
1185
1186
1187 %\section{Chaos on the order topology}
1188 %\label{sec: chaos order topology}
1189 %\subsection{The phase space is an interval of the real line}
1190
1191 %\subsubsection{Toward a topological semiconjugacy}
1192
1193 %In what follows, our intention is to establish, by using a topological
1194 %semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
1195 %iterations on a real interval. To do so, we must firstly introduce some
1196 %notations and terminologies. 
1197
1198 %Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
1199 %1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
1200 %\times \B^\mathsf{N}$.
1201
1202
1203 %\begin{definition}
1204 %The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
1205 %0, 2^{10} \big[$ is defined by:
1206 %\begin{equation}
1207 % \begin{array}{cccl}
1208 %\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
1209 %\longrightarrow & \big[ 0, 2^{10} \big[ \\
1210 % & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
1211 %\varphi \left((S,E)\right)
1212 %\end{array}
1213 %\end{equation}
1214 %where $\varphi\left((S,E)\right)$ is the real number:
1215 %\begin{itemize}
1216 %\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
1217 %is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
1218 %\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
1219 %\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
1220 %\end{itemize}
1221 %\end{definition}
1222
1223
1224
1225 %$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
1226 %real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
1227 %iterations $\Go$ on this real interval. To do so, two intermediate functions
1228 %over $\big[ 0, 2^{10} \big[$ must be introduced:
1229
1230
1231 %\begin{definition}
1232 %\label{def:e et s}
1233 %Let $x \in \big[ 0, 2^{10} \big[$ and:
1234 %\begin{itemize}
1235 %\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
1236 %$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
1237 %\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
1238 %decomposition of $x$ is the one that does not have an infinite number of 9: 
1239 %$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
1240 %\end{itemize}
1241 %$e$ and $s$ are thus defined as follows:
1242 %\begin{equation}
1243 %\begin{array}{cccl}
1244 %e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
1245 % & x & \longmapsto & (e_0, \hdots, e_9)
1246 %\end{array}
1247 %\end{equation}
1248 %and
1249 %\begin{equation}
1250 % \begin{array}{cccc}
1251 %s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
1252 %\rrbracket^{\mathds{N}} \\
1253 % & x & \longmapsto & (s^k)_{k \in \mathds{N}}
1254 %\end{array}
1255 %\end{equation}
1256 %\end{definition}
1257
1258 %We are now able to define the function $g$, whose goal is to translate the
1259 %chaotic iterations $\Go$ on an interval of $\mathds{R}$.
1260
1261 %\begin{definition}
1262 %$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
1263 %\begin{equation}
1264 %\begin{array}{cccc}
1265 %g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
1266 % & x & \longmapsto & g(x)
1267 %\end{array}
1268 %\end{equation}
1269 %where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
1270 %\begin{itemize}
1271 %\item its integral part has a binary decomposition equal to $e_0', \hdots,
1272 %e_9'$, with:
1273 % \begin{equation}
1274 %e_i' = \left\{
1275 %\begin{array}{ll}
1276 %e(x)_i & \textrm{ if } i \neq s^0\\
1277 %e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
1278 %\end{array}
1279 %\right.
1280 %\end{equation}
1281 %\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
1282 %\end{itemize}
1283 %\end{definition}
1284
1285 %\bigskip
1286
1287
1288 %In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
1289 %\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
1290 %\begin{equation}
1291 %g(x) =
1292 %\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
1293 %\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
1294 %\end{equation}
1295
1296
1297 %\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
1298
1299 %Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
1300 %usual one being the Euclidian distance recalled bellow:
1301
1302 %\begin{notation}
1303 %\index{distance!euclidienne}
1304 %$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
1305 %$\Delta(x,y) = |y-x|^2$.
1306 %\end{notation}
1307
1308 %\medskip
1309
1310 %This Euclidian distance does not reproduce exactly the notion of proximity
1311 %induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
1312 %This is the reason why we have to introduce the following metric:
1313
1314
1315
1316 %\begin{definition}
1317 %Let $x,y \in \big[ 0, 2^{10} \big[$.
1318 %$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
1319 %defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
1320 %where:
1321 %\begin{center}
1322 %$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
1323 %\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
1324 %\dfrac{|S^k-\check{S}^k|}{10^k}}$.
1325 %\end{center}
1326 %\end{definition}
1327
1328 %\begin{proposition}
1329 %$D$ is a distance on $\big[ 0, 2^{10} \big[$.
1330 %\end{proposition}
1331
1332 %\begin{proof}
1333 %The three axioms defining a distance must be checked.
1334 %\begin{itemize}
1335 %\item $D \geqslant 0$, because everything is positive in its definition. If
1336 %$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
1337 %(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
1338 %$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
1339 %the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
1340 %\item $D(x,y)=D(y,x)$.
1341 %\item Finally, the triangular inequality is obtained due to the fact that both
1342 %$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
1343 %\end{itemize}
1344 %\end{proof}
1345
1346
1347 %The convergence of sequences according to $D$ is not the same than the usual
1348 %convergence related to the Euclidian metric. For instance, if $x^n \to x$
1349 %according to $D$, then necessarily the integral part of each $x^n$ is equal to
1350 %the integral part of $x$ (at least after a given threshold), and the decimal
1351 %part of $x^n$ corresponds to the one of $x$ ``as far as required''.
1352 %To illustrate this fact, a comparison between $D$ and the Euclidian distance is
1353 %given Figure \ref{fig:comparaison de distances}. These illustrations show that
1354 %$D$ is richer and more refined than the Euclidian distance, and thus is more
1355 %precise.
1356
1357
1358 %\begin{figure}[t]
1359 %\begin{center}
1360 %  \subfigure[Function $x \to dist(x;1,234) $ on the interval
1361 %$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
1362 %  \subfigure[Function $x \to dist(x;3) $ on the interval
1363 %$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
1364 %\end{center}
1365 %\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
1366 %\label{fig:comparaison de distances}
1367 %\end{figure}
1368
1369
1370
1371
1372 %\subsubsection{The semiconjugacy}
1373
1374 %It is now possible to define a topological semiconjugacy between $\mathcal{X}$
1375 %and an interval of $\mathds{R}$:
1376
1377 %\begin{theorem}
1378 %Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
1379 %$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
1380 %\begin{equation*}
1381 %\begin{CD}
1382 %\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
1383 %\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
1384 %    @V{\varphi}VV                    @VV{\varphi}V\\
1385 %\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
1386 %D~\right)
1387 %\end{CD}
1388 %\end{equation*}
1389 %\end{theorem}
1390
1391 %\begin{proof}
1392 %$\varphi$ has been constructed in order to be continuous and onto.
1393 %\end{proof}
1394
1395 %In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
1396 %\big[$.
1397
1398
1399
1400
1401
1402
1403 %\subsection{Study of the chaotic iterations described as a real function}
1404
1405
1406 %\begin{figure}[t]
1407 %\begin{center}
1408 %  \subfigure[ICs on the interval
1409 %$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
1410 %  \subfigure[ICs on the interval
1411 %$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
1412 %  \subfigure[ICs on the interval
1413 %$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
1414 %  \subfigure[ICs on the interval
1415 %$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
1416 %\end{center}
1417 %\caption{Representation of the chaotic iterations.}
1418 %\label{fig:ICs}
1419 %\end{figure}
1420
1421
1422
1423
1424 %\begin{figure}[t]
1425 %\begin{center}
1426 %  \subfigure[ICs on the interval
1427 %$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
1428 %  \subfigure[ICs on the interval
1429 %$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
1430 %\end{center}
1431 %\caption{ICs on small intervals.}
1432 %\label{fig:ICs2}
1433 %\end{figure}
1434
1435 %\begin{figure}[t]
1436 %\begin{center}
1437 %  \subfigure[ICs on the interval
1438 %$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
1439 %  \subfigure[ICs on the interval 
1440 %$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
1441 %\end{center}
1442 %\caption{General aspect of the chaotic iterations.}
1443 %\label{fig:ICs3}
1444 %\end{figure}
1445
1446
1447 %We have written a Python program to represent the chaotic iterations with the
1448 %vectorial negation on the real line $\mathds{R}$. Various representations of
1449 %these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
1450 %It can be remarked that the function $g$ is a piecewise linear function: it is
1451 %linear on each interval having the form $\left[ \dfrac{n}{10},
1452 %\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
1453 %slope is equal to 10. Let us justify these claims:
1454
1455 %\begin{proposition}
1456 %\label{Prop:derivabilite des ICs}
1457 %Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
1458 %$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
1459 %\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
1460
1461 %Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
1462 %\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
1463 %$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
1464 %g'(x)=10$.
1465 %\end{proposition}
1466
1467
1468 %\begin{proof}
1469 %Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
1470 %0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
1471 %prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
1472 %and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
1473 %the images $g(x)$ of these points $x$:
1474 %\begin{itemize}
1475 %\item Have the same integral part, which is $e$, except probably the bit number
1476 %$s^0$. In other words, this integer has approximately the same binary
1477 %decomposition than $e$, the sole exception being the digit $s^0$ (this number is
1478 %then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
1479 %\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
1480 %\item A shift to the left has been applied to the decimal part $y$, losing by
1481 %doing so the common first digit $s^0$. In other words, $y$ has been mapped into
1482 %$10\times y - s^0$.
1483 %\end{itemize}
1484 %To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
1485 %multiplication by 10, and second, add the same constant to each term, which is
1486 %$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
1487 %\end{proof}
1488
1489 %\begin{remark}
1490 %Finally, chaotic iterations are elements of the large family of functions that
1491 %are both chaotic and piecewise linear (like the tent map).
1492 %\end{remark}
1493
1494
1495
1496 %\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
1497
1498 %The two propositions bellow allow to compare our two distances on $\big[ 0,
1499 %2^\mathsf{N} \big[$:
1500
1501 %\begin{proposition}
1502 %Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
1503 %2^\mathsf{N} \big[, D~\right)$ is not continuous. 
1504 %\end{proposition}
1505
1506 %\begin{proof}
1507 %The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
1508 %such that:
1509 %\begin{itemize}
1510 %\item $\Delta (x^n,2) \to 0.$
1511 %\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
1512 %\end{itemize}
1513
1514 %The sequential characterization of the continuity concludes the demonstration.
1515 %\end{proof}
1516
1517
1518
1519 %A contrario:
1520
1521 %\begin{proposition}
1522 %Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
1523 %2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
1524 %\end{proposition}
1525
1526 %\begin{proof}
1527 %If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
1528 %threshold, because $D_e$ only returns integers. So, after this threshold, the
1529 %integral parts of all the $x^n$ are equal to the integral part of $x$. 
1530
1531 %Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
1532 %\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
1533 %means that for all $k$, an index $N_k$ can be found such that, $\forall n
1534 %\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
1535 %digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
1536 %result.
1537 %\end{proof}
1538
1539 %The conclusion of these propositions is that the proposed metric is more precise
1540 %than the Euclidian distance, that is:
1541
1542 %\begin{corollary}
1543 %$D$ is finer than the Euclidian distance $\Delta$.
1544 %\end{corollary}
1545
1546 %This corollary can be reformulated as follows:
1547
1548 %\begin{itemize}
1549 %\item The topology produced by $\Delta$ is a subset of the topology produced by
1550 %$D$.
1551 %\item $D$ has more open sets than $\Delta$.
1552 %\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
1553 %to converge with the one inherited by $\Delta$, which is denoted here by
1554 %$\tau_\Delta$.
1555 %\end{itemize}
1556
1557
1558 %\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
1559 %\label{chpt:Chaos des itérations chaotiques sur R}
1560
1561
1562
1563 %\subsubsection{Chaos according to Devaney}
1564
1565 %We have recalled previously that the chaotic iterations $\left(\Go,
1566 %\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
1567 %can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
1568 %topology, because:
1569 %\begin{itemize}
1570 %\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
1571 %\big[_D\right)$ are semiconjugate by $\varphi$,
1572 %\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
1573 %according to Devaney, because the semiconjugacy preserve this character.
1574 %\item But the topology generated by $D$ is finer than the topology generated by
1575 %the Euclidian distance $\Delta$ -- which is the order topology.
1576 %\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
1577 %chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
1578 %topology on $\mathds{R}$.
1579 %\end{itemize}
1580
1581 %This result can be formulated as follows.
1582
1583 %\begin{theorem}
1584 %\label{th:IC et topologie de l'ordre}
1585 %The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
1586 %Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
1587 %order topology.
1588 %\end{theorem}
1589
1590 %Indeed this result is weaker than the theorem establishing the chaos for the
1591 %finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
1592 %still remains important. Indeed, we have studied in our previous works a set
1593 %different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
1594 %in order to be as close as possible from the computer: the properties of
1595 %disorder proved theoretically will then be preserved when computing. However, we
1596 %could wonder whether this change does not lead to a disorder of a lower quality.
1597 %In other words, have we replaced a situation of a good disorder lost when
1598 %computing, to another situation of a disorder preserved but of bad quality.
1599 %Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
1600
1601
1602
1603
1604
1605
1606
1607 \section{Security Analysis}
1608 \label{sec:security analysis}
1609
1610
1611
1612 In this section the concatenation of two strings $u$ and $v$ is classically
1613 denoted by $uv$.
1614 In a cryptographic context, a pseudorandom generator is a deterministic
1615 algorithm $G$ transforming strings  into strings and such that, for any
1616 seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
1617 $\ell_G(N)$ with $\ell_G(N)>N$.
1618 The notion of {\it secure} PRNGs can now be defined as follows. 
1619
1620 \begin{definition}
1621 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1622 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1623 large $k$'s,
1624 $$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
1625 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1626 probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
1627 internal coin tosses of $D$. 
1628 \end{definition}
1629
1630 Intuitively, it means that there is no polynomial time algorithm that can
1631 distinguish a perfect uniform random generator from $G$ with a non
1632 negligible probability. The interested reader is referred
1633 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
1634 quite easily possible to change the function $\ell$ into any polynomial
1635 function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
1636
1637 The generation schema developed in (\ref{equation Oplus}) is based on a
1638 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1639 without loss of generality, that for any string $S_0$ of size $N$, the size
1640 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
1641 Let $S_1,\ldots,S_k$ be the 
1642 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1643 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1644 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1645 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1646 (x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$. 
1647 We claim now that if this PRNG is secure,
1648 then the new one is secure too.
1649
1650 \begin{proposition}
1651 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1652 PRNG too.
1653 \end{proposition}
1654
1655 \begin{proof}
1656 The proposition is proved by contraposition. Assume that $X$ is not
1657 secure. By Definition, there exists a polynomial time probabilistic
1658 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1659 $N\geq \frac{k_0}{2}$ satisfying 
1660 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1661 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1662 $kN$:
1663 \begin{enumerate}
1664 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1665 \item Pick a string $y$ of size $N$ uniformly at random.
1666 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1667   \bigoplus_{i=1}^{i=k} w_i).$
1668 \item Return $D(z)$.
1669 \end{enumerate}
1670
1671
1672 Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1673 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1674 (each $w_i$ has length $N$) to 
1675 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1676   \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1677 \begin{equation}\label{PCH-1}
1678 D^\prime(w)=D(\varphi_y(w)),
1679 \end{equation}
1680 where $y$ is randomly generated. 
1681 Moreover, for each $y$, $\varphi_{y}$ is injective: if 
1682 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1683 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1684 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1685 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1686 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1687 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1688 one has
1689 \begin{equation}\label{PCH-2}
1690 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
1691 \end{equation}
1692
1693 Now, using (\ref{PCH-1}) again, one has  for every $x$,
1694 \begin{equation}\label{PCH-3}
1695 D^\prime(H(x))=D(\varphi_y(H(x))),
1696 \end{equation}
1697 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1698 thus
1699 \begin{equation}\label{PCH-3}
1700 D^\prime(H(x))=D(yx),
1701 \end{equation}
1702 where $y$ is randomly generated. 
1703 It follows that 
1704
1705 \begin{equation}\label{PCH-4}
1706 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1707 \end{equation}
1708  From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1709 there exist a polynomial time probabilistic
1710 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1711 $N\geq \frac{k_0}{2}$ satisfying 
1712 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1713 proving that $H$ is not secure, a contradiction. 
1714 \end{proof}
1715
1716
1717
1718
1719 \section{A cryptographically secure prng for GPU}
1720 \label{sec:CSGPU}
1721 It is  possible to build a  cryptographically secure prng based  on the previous
1722 algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
1723 the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
1724 practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
1725 $$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
1726 prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
1727 known to  be slow and  not efficient for  the generation of random  numbers. For
1728 current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
1729 operation. So in  order to obtain quite reasonable  performances, it is required
1730 to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
1731 less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
1732 pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
1733 4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
1734 chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
1735 $log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
1736 the BBS algorithm, with different combinations of $M$ is required.
1737
1738 Currently this PRNG does not succeed to pass all the tests of TestU01.
1739
1740
1741 \section{Conclusion}
1742
1743
1744 In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
1745 iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
1746 We also propose a PRNG cryptographically secure and its implementation on GPU.
1747
1748 An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
1749 generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
1750 20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
1751
1752 In future  work we plan to  extend this work  for parallel PRNG for  clusters or
1753 grid computing. We also plan to improve  the BBS version in order to succeed all
1754 the tests of TestU01.
1755
1756
1757
1758 \bibliographystyle{plain} 
1759 \bibliography{mabase}
1760 \end{document}