is firstly proven to be chaotic according to the Devaney's formulation. We thus propose an efficient
implementation for GPU that successfully passes the {\it BigCrush} tests, deemed to be the hardest
battery of tests in TestU01. Experiments show that this PRNG can generate
-about 20 billions of random numbers per second on Tesla C1060 and NVidia GTX280
+about 20 billion of random numbers per second on Tesla C1060 and NVidia GTX280
cards.
It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically
secure.
\section{Introduction}
-Randomness is of importance in many fields as scientific simulations or cryptography.
+Randomness is of importance in many fields such as scientific simulations or cryptography.
``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
called a pseudorandom number generator (PRNG), or by a physical non-deterministic
process having all the characteristics of a random noise, called a truly random number
In this paper, we focus on reproducible generators, useful for instance in
Monte-Carlo based simulators or in several cryptographic schemes.
These domains need PRNGs that are statistically irreproachable.
-On some fields as in numerical simulations, speed is a strong requirement
+In some fields such as in numerical simulations, speed is a strong requirement
that is usually attained by using parallel architectures. In that case,
-a recurrent problem is that a deflate of the statistical qualities is often
+a recurrent problem is that a deflation of the statistical qualities is often
reported, when the parallelization of a good PRNG is realized.
This is why ad-hoc PRNGs for each possible architecture must be found to
achieve both speed and randomness.
On the other side, speed is not the main requirement in cryptography: the great
-need is to define \emph{secure} generators being able to withstand malicious
+need is to define \emph{secure} generators able to withstand malicious
attacks. Roughly speaking, an attacker should not be able in practice to make
the distinction between numbers obtained with the secure generator and a true random
sequence.
-Finally, a small part of the community working in this domain focus on a
+Finally, a small part of the community working in this domain focuses on a
third requirement, that is to define chaotic generators.
The main idea is to take benefits from a chaotic dynamical system to obtain a
generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic.
The authors' opinion is that topological properties of disorder, as they are
properly defined in the mathematical theory of chaos, can reinforce the quality
of a PRNG. But they are not substitutable for security or statistical perfection.
-Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
+Indeed, to the authors' mind, such properties can be useful in the two following situations. On the
one hand, a post-treatment based on a chaotic dynamical system can be applied
to a PRNG statistically deflective, in order to improve its statistical
properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
statistical perfection refers to the ability to pass the whole
{\it BigCrush} battery of tests, which is widely considered as the most
stringent statistical evaluation of a sequence claimed as random.
-This battery can be found into the well-known TestU01 package~\cite{LEcuyerS07}.
+This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}.
Chaos, for its part, refers to the well-established definition of a
chaotic dynamical system proposed by Devaney~\cite{Devaney}.
numbers inside a GPU when a scientific application runs in it. This remark
motivates our proposal of a chaotic and statistically perfect PRNG for GPU.
Such device
-allows us to generated almost 20 billions of pseudorandom numbers per second.
+allows us to generate almost 20 billion of pseudorandom numbers per second.
Furthermore, we show that the proposed post-treatment preserves the
cryptographical security of the inputted PRNG, when this last has such a
property.
-Last, but not least, we propose a rewritten of the Blum-Goldwasser asymmetric
+Last, but not least, we propose a rewritting of the Blum-Goldwasser asymmetric
key encryption protocol by using the proposed method.
The remainder of this paper is organized as follows. In Section~\ref{section:related
\section{Related works on GPU based PRNGs}
\label{section:related works}
-Numerous research works on defining GPU based PRNGs have yet been proposed in the
-literature, so that completeness is impossible.
+Numerous research works on defining GPU based PRNGs have already been proposed in the
+literature, so that exhaustivity is impossible.
This is why authors of this document only give reference to the most significant attempts
in this domain, from their subjective point of view.
The quantity of pseudorandom numbers generated per second is mentioned here
In \cite{ZRKB10}, the authors propose different versions of efficient GPU PRNGs
based on Lagged Fibonacci or Hybrid Taus. They have used these
PRNGs for Langevin simulations of biomolecules fully implemented on
-GPU. Performance of the GPU versions are far better than those obtained with a
+GPU. Performances of the GPU versions are far better than those obtained with a
CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01.
However the evaluations of the proposed PRNGs are only statistical ones.
with a GTX 280 GPU, which should be compared with
the results presented in this document.
We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
-able to pass the {\it Crush} battery, which is very easy compared to the {\it Big Crush} one.
+able to pass the {\it Crush} battery, which is far easier than the {\it Big Crush} one.
Lastly, Cuda has developed a library for the generation of pseudorandom numbers called
Curand~\cite{curand11}. Several PRNGs are implemented, among
But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
\newline
\newline
-We can finally remark that, to the best of our knowledge, no GPU implementation have been proven to be chaotic, and the cryptographically secure property is surprisingly never regarded.
+We can finally remark that, to the best of our knowledge, no GPU implementation has been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.
\section{Basic Recalls}
\label{section:BASIC RECALLS}
\item In addition, if two systems present the same cells and their respective
strategies start with the same terms, then the distance between these two points
must be small because the evolution of the two systems will be the same for a
-while. Indeed, the two dynamical systems start with the same initial condition,
-use the same update function, and as strategies are the same for a while, then
-components that are updated are the same too.
+while. Indeed, both dynamical systems start with the same initial condition,
+use the same update function, and as strategies are the same for a while, furthermore
+updated components are the same as well.
\end{itemize}
The distance presented above follows these recommendations. Indeed, if the floor
value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
precisely, this floating part is less than $10^{-k}$ if and only if the first
$k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
nonzero, then the $k^{th}$ terms of the two strategies are different.
-The impact of this choice for a distance will be investigate at the end of the document.
+The impact of this choice for a distance will be investigated at the end of the document.
Finally, it has been established in \cite{guyeux10} that,
\end{theorem}
-These results of chaos and uniform distribution have lead us to study the possibility to build a
+These results of chaos and uniform distribution have led us to study the possibility of building a
pseudorandom number generator (PRNG) based on the chaotic iterations.
As $G_f$, defined on the domain $\llbracket 1 ; \mathsf{N} \rrbracket^{\mathds{N}}
-\times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
+\times \mathds{B}^\mathsf{N}$, is built from Boolean networks $f : \mathds{B}^\mathsf{N}
\rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
during implementations (due to the discrete nature of $f$). Indeed, it is as if
$\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ; \mathsf{N}
\rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
-Let us finally remark that the vectorial negation satisfies the hypotheses of the two theorems above.
+Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.
\section{Application to Pseudorandomness}
\label{sec:pseudorandom}
an integer $b$, ensuring that the number of executed iterations is at least $b$
and at most $2b+1$; and an initial configuration $x^0$.
It returns the new generated configuration $x$. Internally, it embeds two
-\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
+\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that return integers
uniformly distributed
into $\llbracket 1 ; k \rrbracket$.
\textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
\label{equation Oplus}
\end{equation}
where $\oplus$ is for the bitwise exclusive or between two integers.
-This rewritten can be understood as follows. The $n-$th term $S^n$ of the
+This rewritting can be understood as follows. The $n-$th term $S^n$ of the
sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
the list of cells to update in the state $x^n$ of the system (represented
as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th
$\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
$k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
decomposition of $S^n$ is 1. Such chaotic iterations are more general
-than the ones presented in Definition \ref{Def:chaotic iterations} for
-the fact that, instead of updating only one term at each iteration,
+than the ones presented in Definition \ref{Def:chaotic iterations} because, instead of updating only one term at each iteration,
we select a subset of components to change.
Obviously, replacing Algorithm~\ref{CI Algorithm} by
-Equation~\ref{equation Oplus}, possible when the iteration function is
+Equation~\ref{equation Oplus}, which is possible when the iteration function is
the vectorial negation, leads to a speed improvement. However, proofs
of chaos obtained in~\cite{bg10:ij} have been established
only for chaotic iterations of the form presented in Definition
\right.
\end{equation}%
-Another time, a shift function appears as a component of these general chaotic
+Once more, a shift function appears as a component of these general chaotic
iterations.
To study the Devaney's chaos property, a distance between two points
\left\{
\begin{array}{lll}
\displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
-}\delta (E_{k},\check{E}_{k})}\textrm{ is another time the Hamming distance}, \\
+}\delta (E_{k},\check{E}_{k})}\textrm{ is once more the Hamming distance}, \\
\displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
\sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
\end{array}%
\begin{proof}
$d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
-too, thus $d$ will be a distance as sum of two distances.
+too, thus $d$, as being the sum of two distances, will also be a distance.
\begin{itemize}
\item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then
$d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then
Before being able to study the topological behavior of the general
-chaotic iterations, we must firstly establish that:
+chaotic iterations, we must first establish that:
\begin{proposition}
For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on
G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
0. Let $\varepsilon >0$. \medskip
\begin{itemize}
-\item If $\varepsilon \geqslant 1$, we see that distance
+\item If $\varepsilon \geqslant 1$, we see that the distance
between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
\medskip
claimed in the lemma.
\end{proof}
-We can now prove the Theorem~\ref{t:chaos des general}...
+We can now prove Theorem~\ref{t:chaos des general}...
\begin{proof}[Theorem~\ref{t:chaos des general}]
Firstly, strong transitivity implies transitivity.
32 least significant bits of a given integer, and the code \texttt{(unsigned
int)(t$>>$32)} in order to obtain the 32 most significant bits of \texttt{t}.
-So producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
+Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
that are provided by 3 64-bits PRNGs. This version successfully passes the
stringent BigCrush battery of tests~\cite{LEcuyerS07}.
Obviously, having these requirements in mind, it is possible to build
a program similar to the one presented in Listing
\ref{algo:seqCIPRNG}, which computes pseudorandom numbers on GPU. To
-do so, we must firstly recall that in the CUDA~\cite{Nvid10}
+do so, we must firstly remind that in the CUDA~\cite{Nvid10}
environment, threads have a local identifier called
\texttt{ThreadIdx}, which is relative to the block containing
-them. Furthermore, in CUDA, parts of the code that are executed by the GPU are
+them. Furthermore, in CUDA, parts of the code that are executed by the GPU, are
called {\it kernels}.
It is possible to deduce from the CPU version a quite similar version adapted to GPU.
-The simple principle consists to make each thread of the GPU computing the CPU version of our PRNG.
+The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG.
Of course, the three xor-like
PRNGs used in these computations must have different parameters.
In a given thread, these lasts are
This generator is able to pass the whole BigCrush battery of tests, for all
the versions that have been tested depending on their number of threads
-(called \texttt{NumThreads} in our algorithm, tested until $10$ millions).
+(called \texttt{NumThreads} in our algorithm, tested up to $5$ million).
\begin{remark}
-The proposed algorithm has the advantage to manipulate independent
+The proposed algorithm has the advantage of manipulating independent
PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
using a master node for the initialization. This master node computes the initial parameters
-for all the differents nodes involves in the computation.
+for all the different nodes involved in the computation.
\end{remark}
\subsection{Improved Version for GPU}
which unsigned longs (64 bits) have been replaced by unsigned integers (32
bits).
-This version also can pass the whole {\it BigCrush} battery of tests.
+This version can also pass the whole {\it BigCrush} battery of tests.
\begin{algorithm}
To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
we must guarantee that this dynamical system iterates on the space
$\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
-The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
+The left term $x$ obviously belongs to $\mathds{B}^ \mathsf{N}$.
To prevent from any flaws of chaotic properties, we must check that the right
term (the last $t$), corresponding to the strategies, can possibly be equal to any
integer of $\llbracket 1, \mathsf{N} \rrbracket$.
generation. Moreover this storage is completely
useless, in case of applications that consume the pseudorandom
numbers directly after generation. We can see that when the number of threads is greater
-than approximately 30,000 and lower than 5 millions, the number of pseudorandom numbers generated
+than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated
per second is almost constant. With the naive version, this value ranges from 2.5 to
3GSamples/s. With the optimized version, it is approximately equal to
20GSamples/s. Finally we can remark that both GPU cards are quite similar, but in