\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
+\usepackage{fullpage}
+\usepackage{fancybox}
+\usepackage{amsmath}
+\usepackage{moreverb}
+\usepackage{commath}
\title{Efficient generation of pseudo random numbers based on chaotic iterations on GPU}
\begin{document}
\section{Efficient prng based on chaotic iterations}
-On parle du séquentiel avec des nombres 64 bits
+On parle du séquentiel avec des nombres 64 bits\\
+
+Faire le lien avec le paragraphe précédent (je considère que la stratégie s'appelle $S^i$\\
+
+In order to implement efficiently a PRNG based on chaotic iterations it is
+possible to improve previous works [ref]. One solution consists in considering
+that the strategy used $S^i$ contains all the bits for which the negation is
+achieved out. Then instead of applying the negation on these bits we can simply
+apply the xor operator between the current number and the strategy $S^i$.
+
+\begin{figure}[htbp]
+\begin{center}
+\fbox{
+\begin{minipage}{14cm}
+unsigned int CIprng() \{\\
+ static unsigned int x = 123123123;\\
+ unsigned long t1 = xorshift();\\
+ unsigned long t2 = xor128();\\
+ unsigned long t3 = xorwow();\\
+ x = x\^\ (unsigned int)t;\\
+ x = x\^\ (unsigned int)(t2$>>$32);\\
+ x = x\^\ (unsigned int)(t3$>>$32);\\
+ x = x\^\ (unsigned int)t2;\\
+ x = x\^\ (unsigned int)(t$>>$32);\\
+ x = x\^\ (unsigned int)t3;\\
+ return x;\\
+\}
+\end{minipage}
+}
+\end{center}
+\caption{sequential Chaotic Iteration PRNG}
+\label{algo:seqCIprng}
+\end{figure}
+
+In Figure~\ref{algo:seqCIprng} a sequential version of our chaotic iterations based PRNG is
+presented. This version uses three classical 64-bits PRNG: the xorshift, the
+xor128 and the xorwow. These three PRNGs are presented in~\cite{Marsaglia2003}.
\section{Efficient prng based on chaotic iterations on GPU}
\section{Lyapunov}
\section{Conclusion}
-
+\bibliographystyle{plain}
+\bibliography{mabase}
\end{document}