]> AND Private Git Repository - prng_gpu.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif
authorRaphael Couturier <raphael.couturier@univ-fcomte.fr>
Fri, 14 Sep 2012 10:10:06 +0000 (12:10 +0200)
committerRaphael Couturier <raphael.couturier@univ-fcomte.fr>
Fri, 14 Sep 2012 10:10:06 +0000 (12:10 +0200)
reponse.tex

index 5a762c2000ab3b9d77fee4ad51a92069f1d0551c..78354736bdfe8e75c551fa0d4e0512a223106483 100644 (file)
@@ -18,9 +18,9 @@
 \bigskip
 \textit{The authors should include a summary of  test measurements showing their method passes the test sets mentioned (NIST, Diehard, TestU01) instead of the one sentence saying it passed that is in section 1.}
 
-\begin{color}{red} In section 1, we have added a small summary of test measurements performed with BigCrush of TestU01.
-As other tests (NIST, Diehard, SmallCrush and Crush of TestU01 ) are deemed less selective, in this paper we did not use them.
-\end{color}
+In section 1, we have added a small summary of test measurements performed with BigCrush of TestU01.
+
+
 
 
 \bigskip
@@ -109,7 +109,7 @@ the time required to break it is astronomically large, making this attack comple
 impracticable: being cryptographically secure is not a
 question of key size.
 
-\begin{color}{green}
+
 Most of theoretical cryptographic definitions are somehow an extension of the
 notion of one-way function. Intuitively a one way function is a function
  easy to compute but  which is practically impossible to
@@ -120,7 +120,7 @@ $f(y)\neq f(x)$. Informally, if a function is one-way, it means that every
 algorithm that can compute $x$ from $f(x)$ with a good probability requires
 a similar amount of time than the brute force attack. It is important to
 note that if the size of $x$ is small, then the brute force attack works in
-practice. The theoretical security properties don't guaranty that the system
+practice. The theoretical security properties do not guaranty that the system
 cannot be broken, it guaranty  that if the keys are large enough, then the
 system still works (computing $f(x)$ can be done, even if $x$ is large), and
 cannot be broken in a reasonable time. The theoretical definition of a
@@ -128,7 +128,7 @@ secure PRNG is more technical than the one on one-way function but the
 ideas are the same: a cryptographically secured PRNG can be broken 
  by a brute force prediction, but not in a reasonable time if the
  keys/seeds are large enough.
-\end{color}
+
 
 Nevertheless, new arguments have been added in several places of the revision of our paper, 
 concerning more concrete and practical aspects of security, like the