+In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
+\textquotedblleft iterated\textquotedblright . Note that in a more
+general formulation, $S^n$ can be a subset of components and
+$\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by
+$\left(f(x^{k})\right)_{S^{n}}$, where $k<n$, describing for example,
+delays transmission~\cite{Robert1986,guyeux10}. Finally, let us remark that
+the term ``chaotic'', in the name of these iterations, has \emph{a
+priori} no link with the mathematical theory of chaos, recalled above.
+
+
+Let us now recall how to define a suitable metric space where chaotic iterations are continuous. For further explanations, see, e.g., \cite{guyeux10}.
+
+Let $\delta $ be the \emph{discrete Boolean metric}, $\delta (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
+\begin{equation*}
+\begin{array}{lrll}
+F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
+\longrightarrow & \mathds{B}^{\mathsf{N}} \\
+& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
+(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+\end{array}%
+\end{equation*}%
+\noindent where + and . are the Boolean addition and product operations.
+Consider the phase space:
+\begin{equation*}
+\mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
+\mathds{B}^\mathsf{N},
+\end{equation*}
+\noindent and the map defined on $\mathcal{X}$:
+\begin{equation}
+G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
+\end{equation}
+\noindent where $\sigma$ is the \emph{shift} function defined by $\sigma (S^{n})_{n\in \mathds{N}}\in \mathbb{S}\longrightarrow (S^{n+1})_{n\in \mathds{N}}\in \mathbb{S}$ and $i$ is the \emph{initial function} $i:(S^{n})_{n\in \mathds{N}} \in \mathbb{S}\longrightarrow S^{0}\in \llbracket 1;\mathsf{N}\rrbracket$. Then the chaotic iterations defined in (\ref{sec:chaotic iterations}) can be described by the following iterations:
+\begin{equation*}
+\left\{
+\begin{array}{l}
+X^0 \in \mathcal{X} \\
+X^{k+1}=G_{f}(X^k).%
+\end{array}%
+\right.
+\end{equation*}%
+
+With this formulation, a shift function appears as a component of chaotic iterations. The shift function is a famous example of a chaotic map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as chaotic.
+
+Let $f$ be a map from $\mathds{B}^n$ to itself. The
+{\emph{asynchronous iteration graph}} associated with $f$ is the
+directed graph $\Gamma(f)$ defined by: the set of vertices is
+$\mathds{B}^n$; for all $x\in\mathds{B}^n$ and $i\in \llbracket1;n\rrbracket$,
+the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$.
+The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
+path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
+strategy $s$ such that the parallel iteration of $G_f$ from the
+initial point $(s,x)$ reaches the point $x'$.
+
+We have proven in \cite{FCT11} that,
+
+
+\begin{theorem}
+\label{Th:Caractérisation des IC chaotiques}
+Let $f:\mathds{B}^n\to\mathds{B}^n$. $G_f$ is chaotic (according to Devaney)
+if and only if $\Gamma(f)$ is strongly connected.
+\end{theorem}
+
+
+
+
+\section{Application to Pseudo-Randomness}
+
+We have proposed in~\cite{bgw09:ip} a new family of generators that receives
+two PRNGs as inputs. These two generators are mixed with chaotic iterations,
+leading thus to a new PRNG that improves the statistical properties of each
+generator taken alone. Furthermore, our generator
+possesses various chaos properties
+that none of the generators used as input present.
+
+\begin{algorithm}[h!]
+%\begin{scriptsize}
+\KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($n$ bits)}
+\KwOut{a configuration $x$ ($n$ bits)}
+$x\leftarrow x^0$\;
+$k\leftarrow b + \textit{XORshift}(b+1)$\;
+\For{$i=0,\dots,k-1$}
+{
+$s\leftarrow{\textit{XORshift}(n)}$\;
+$x\leftarrow{F_f(s,x)}$\;
+}
+return $x$\;
+%\end{scriptsize}
+\caption{PRNG with chaotic functions}
+\label{CI Algorithm}
+\end{algorithm}
+
+\begin{algorithm}[h!]
+\SetAlgoLined
+\KwIn{the internal configuration $z$ (a 32-bit word)}
+\KwOut{$y$ (a 32-bit word)}
+$z\leftarrow{z\oplus{(z\ll13)}}$\;
+$z\leftarrow{z\oplus{(z\gg17)}}$\;
+$z\leftarrow{z\oplus{(z\ll5)}}$\;
+$y\leftarrow{z}$\;
+return $y$\;
+\medskip
+\caption{An arbitrary round of \textit{XORshift} algorithm}
+\label{XORshift}
+\end{algorithm}
+
+
+
+
+
+This generator is synthesized in Algorithm~\ref{CI Algorithm}.
+It takes as input: a function $f$;
+an integer $b$, ensuring that the number of executed iterations is at least $b$ and at most $2b+1$; and an initial configuration $x^0$.
+It returns the new generated configuration $x$. Internally, it embeds two
+\textit{XORshift}$(k)$ PRNGs \cite{Marsaglia2003} that returns integers uniformly distributed
+into $\llbracket 1 ; k \rrbracket$.
+\textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia, which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number with a bit shifted version of it. This PRNG, which has a period of $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used in our PRNG to compute the strategy length and the strategy elements.
+
+
+We have proven in \cite{FCT11} that,
+
+\begin{theorem}
+ Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
+ iteration graph, $\check{M}$ its adjacency
+ matrix and $M$ a $n\times n$ matrix defined as in the previous lemma.
+ If $\Gamma(f)$ is strongly connected, then
+ the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows
+ a law that tends to the uniform distribution
+ if and only if $M$ is a double stochastic matrix.
+\end{theorem}