]> AND Private Git Repository - prng_gpu.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
affiliations + formules + plan
authorcguyeux <cguyeux@iut-bm.univ-fcomte.fr>
Thu, 25 Oct 2012 08:23:53 +0000 (10:23 +0200)
committercguyeux <cguyeux@iut-bm.univ-fcomte.fr>
Thu, 25 Oct 2012 08:23:53 +0000 (10:23 +0200)
prng_gpu.tex

index 085ce1e4d83cfa91529ca4974ade1af78d5154f4..55b834d65fb8e4453a3b1d5d2544d6c5d003317a 100644 (file)
@@ -46,7 +46,7 @@
 \begin{document}
 
 \author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
-Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
+Guyeux, and Pierre-Cyrille Héam*\\ FEMTO-ST Institute, UMR  6174 CNRS,\\ University of Franche-Comt\'{e}, Besan\c con, France\\ * Authors in alphabetic order}
    
 
 %\IEEEcompsoctitleabstractindextext{
@@ -189,14 +189,13 @@ The remainder of this paper  is organized as follows. In Section~\ref{section:re
   and on an iteration process called ``chaotic
 iterations'' on which the post-treatment is based. 
 The proposed PRNG and its proof of chaos are given in  Section~\ref{sec:pseudorandom}.
-
-Section~\ref{The generation of pseudorandom sequence} illustrates the statistical
-improvement related to the chaotic iteration based post-treatment, for
-our previously released PRNGs and a new efficient 
-implementation on CPU.
-
+%Section~\ref{The generation of pseudorandom sequence} illustrates the statistical
+%improvement related to the chaotic iteration based post-treatment, for
+%our previously released PRNGs and a new efficient 
+%implementation on CPU.
  Section~\ref{sec:efficient PRNG
-  gpu}   describes and evaluates theoretically  the  GPU   implementation. 
+  gpu}   describes and evaluates theoretically new effective versions of
+our pseudorandom generators,  in particular with a  GPU   implementation. 
 Such generators are experimented in 
 Section~\ref{sec:experiments}.
 We show in Section~\ref{sec:security analysis} that, if the inputted
@@ -2052,10 +2051,10 @@ To encrypt his message, Bob will compute
 c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.
  \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)
 \end{equation*}
-instead of $$\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$$. 
+instead of $$\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right).$$ 
 
 The same decryption stage as in Blum-Goldwasser leads to the sequence 
-$$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$$.
+$$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right).$$
 Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
 By doing so, the proposed generator is used in place of BBS, leading to
 the inheritance of all the properties presented in this paper.