+\subsection{Theoretical Evaluation of the Improved Version}
+
+A run of Algorithm~\ref{algo:gpu_kernel2} consists in four operations having
+the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
+system of Eq.~\ref{eq:generalIC}. That is, four iterations of the general chaotic
+iterations are realized between two stored values of the PRNG.
+To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
+we must guarantee that this dynamical system iterates on the space
+$\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
+The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
+To prevent from any flaws of chaotic properties, we must check that each right
+term, corresponding to terms of the strategies, can possibly be equal to any
+integer of $\llbracket 1, \mathsf{N} \rrbracket$.
+
+Such a result is obvious for the two first lines, as for the xor-like(), all the
+integers belonging into its interval of definition can occur at each iteration.
+It can be easily stated for the two last lines by an immediate mathematical
+induction.
+
+Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
+chaotic iterations presented previously, and for this reason, it satisfies the
+Devaney's formulation of a chaotic behavior.