]> AND Private Git Repository - prng_gpu.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fldksjfq
authorcguyeux <cguyeux@iut-bm.univ-fcomte.fr>
Thu, 25 Oct 2012 09:15:57 +0000 (11:15 +0200)
committercguyeux <cguyeux@iut-bm.univ-fcomte.fr>
Thu, 25 Oct 2012 09:15:57 +0000 (11:15 +0200)
prng_gpu.tex

index 807f6dfa2c56eecdeb0a522ca445b8db83f5398c..26460b30571f16d7045641390603410c32006661 100644 (file)
@@ -177,8 +177,8 @@ Pseudorandom numbers are generated at a rate of 20GSamples/s, which is faster
 than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
 statistical behavior). Experiments are also provided using BBS as the initial
 random generator. The generation speed is significantly weaker.
 than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
 statistical behavior). Experiments are also provided using BBS as the initial
 random generator. The generation speed is significantly weaker.
-Note also that an original qualitative comparison between topological chaotic
-properties and statistical tests is also proposed.
+%Note also that an original qualitative comparison between topological chaotic
+%properties and statistical tests is also proposed.
 
 
 
 
 
 
@@ -1786,14 +1786,7 @@ Let $\varepsilon > 0$.
 $\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom
 generator $G$ if
 
 $\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom
 generator $G$ if
 
-\begin{flushleft}
-$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right.$
-\end{flushleft}
-
-\begin{flushright}
-$ - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$
-\end{flushright}
-
+$$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right. - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$$
 \noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation
 ``$\in_R$'' indicates the process of selecting an element at random and uniformly over the
 corresponding set.
 \noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation
 ``$\in_R$'' indicates the process of selecting an element at random and uniformly over the
 corresponding set.