]> AND Private Git Repository - prng_gpu.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Une section en moins, sniff
authorcguyeux <cguyeux@iut-bm.univ-fcomte.fr>
Thu, 25 Oct 2012 08:08:08 +0000 (10:08 +0200)
committercguyeux <cguyeux@iut-bm.univ-fcomte.fr>
Thu, 25 Oct 2012 08:08:08 +0000 (10:08 +0200)
prng_gpu.tex

index b3a844a113d6826ba9d14acc7219f966e32520c1..085ce1e4d83cfa91529ca4974ade1af78d5154f4 100644 (file)
@@ -968,329 +968,331 @@ have $d((S,E),(\tilde S,E))<\epsilon$.
 \end{proof}
 
 
-\section{Statistical Improvements Using Chaotic Iterations}
-
-\label{The generation of pseudorandom sequence}
-
-
-Let us now explain why we have reasonable ground to believe that chaos 
-can improve statistical properties.
-We will show in this section that chaotic properties as defined in the
-mathematical theory of chaos are related to some statistical tests that can be found
-in the NIST battery. Furthermore, we will check that, when mixing defective PRNGs with
-chaotic iterations, the new generator presents better statistical properties
-(this section summarizes and extends the work of~\cite{bfg12a:ip}).
-
-
-
-\subsection{Qualitative relations between topological properties and statistical tests}
-
-
-There are various relations between topological properties that describe an unpredictable behavior for a discrete 
-dynamical system on the one
-hand, and statistical tests to check the randomness of a numerical sequence
-on the other hand. These two mathematical disciplines follow a similar 
-objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a
-recurrent sequence), with two different but complementary approaches.
-It is true that the following illustrative links give only qualitative arguments, 
-and proofs should be provided later to make such arguments irrefutable. However 
-they give a first understanding of the reason why we think that chaotic properties should tend
-to improve the statistical quality of PRNGs.
-%
-Let us now list some of these relations between topological properties defined in the mathematical
-theory of chaos and tests embedded into the NIST battery. %Such relations need to be further 
-%investigated, but they presently give a first illustration of a trend to search similar properties in the 
-%two following fields: mathematical chaos and statistics.
-
-
-\begin{itemize}
-    \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must 
-have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of
-a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity
-is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a
-knowledge about the behavior of the system, that is, it never enters into a loop. A similar importance for periodicity is emphasized in
-the two following NIST tests~\cite{Nist10}:
-    \begin{itemize}
-        \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
-        \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are close one to another) in the tested sequence that would indicate a deviation from the assumption of randomness.
-    \end{itemize}
-
-\item \textbf{Transitivity}. This topological property previously introduced  states that the dynamical system is intrinsically complicated: it cannot be simplified into 
-two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space. 
-This focus on the places visited by the orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory
-of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention 
-is brought on the states visited during a random walk in the two tests below~\cite{Nist10}:
-    \begin{itemize}
-        \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk.
-        \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence.
-    \end{itemize}
-
-\item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillate as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according
-to Li-Yorke~\cite{Li75,Ruette2001}. A similar property is regarded in the following NIST test~\cite{Nist10}.
-    \begin{itemize}
-        \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow.
-    \end{itemize}
-    \item \textbf{Topological entropy}. The desire to formulate an equivalency of the thermodynamics entropy
-has emerged both in the topological and statistical fields. Once again, a similar objective has led to two different
-rewritting of an entropy based disorder: the famous Shannon definition of entropy is approximated in the statistical approach, 
-whereas topological entropy is defined as follows:
-$x,y \in \mathcal{X}$ are $\varepsilon-$\emph{separated in time $n$} if there exists $k \leqslant n$ such that $d\left(f^{(k)}(x),f^{(k)}(y)\right)>\varepsilon$. Then $(n,\varepsilon)-$separated sets are sets of points that are all $\varepsilon-$separated in time $n$, which
-leads to the definition of $s_n(\varepsilon,Y)$, being the maximal cardinality of all $(n,\varepsilon)-$separated sets. Using these notations, 
-the topological entropy is defined as follows: $$h_{top}(\mathcal{X},f)  = \displaystyle{\lim_{\varepsilon \rightarrow 0} \Big[ \limsup_{n \rightarrow +\infty} \dfrac{1}{n} \log s_n(\varepsilon,\mathcal{X})\Big]}.$$
-This value measures the average exponential growth of the number of distinguishable orbit segments. 
-In this sense, it measures the complexity of the topological dynamical system, whereas 
-the Shannon approach comes to mind when defining the following test~\cite{Nist10}:
-    \begin{itemize}
-\item \textbf{Approximate Entropy Test}. Compare the frequency of the overlapping blocks of two consecutive/adjacent lengths ($m$ and $m+1$) against the expected result for a random sequence.
-    \end{itemize}
-
-    \item \textbf{Non-linearity, complexity}. Finally, let us remark that non-linearity and complexity are 
-not only sought in general to obtain chaos, but they are also required for randomness, as illustrated by the two tests below~\cite{Nist10}.
-    \begin{itemize}
-\item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence.
-\item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random.
-      \end{itemize}
-\end{itemize}
-
-
-We have proven in our previous works~\cite{guyeux12:bc} that chaotic iterations satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques} are, among other
-things, strongly transitive, topologically mixing, chaotic as defined by Li and Yorke,
-and that they have a topological entropy and an exponent of Lyapunov both equal to $ln(\mathsf{N})$,
-where $\mathsf{N}$ is the size of the iterated vector.
-These topological properties make that we are ground to believe that a generator based on chaotic
-iterations will probably be able to pass all the existing statistical batteries for pseudorandomness like
-the NIST one. The following subsections, in which we prove that defective generators have their
-statistical properties improved by chaotic iterations, show that such an assumption is true.
-
-\subsection{Details of some Existing Generators}
-
-The list of defective PRNGs we will use 
-as inputs for the statistical tests to come is introduced here.
-
-Firstly, the simple linear congruency generators (LCGs) will be used. 
-They are defined by the following recurrence:
-\begin{equation}
-x^n = (ax^{n-1} + c)~mod~m,
-\label{LCG}
-\end{equation}
-where $a$, $c$, and $x^0$ must be, among other things, non-negative and inferior to 
-$m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer to two (resp. three) 
-combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
+%\section{Statistical Improvements Using Chaotic Iterations}
+
+%\label{The generation of pseudorandom sequence}
+
+
+%Let us now explain why we have reasonable ground to believe that chaos 
+%can improve statistical properties.
+%We will show in this section that chaotic properties as defined in the
+%mathematical theory of chaos are related to some statistical tests that can be found
+%in the NIST battery. Furthermore, we will check that, when mixing defective PRNGs with
+%chaotic iterations, the new generator presents better statistical properties
+%(this section summarizes and extends the work of~\cite{bfg12a:ip}).
+
+
+
+%\subsection{Qualitative relations between topological properties and statistical tests}
+
+
+%There are various relations between topological properties that describe an unpredictable behavior for a discrete 
+%dynamical system on the one
+%hand, and statistical tests to check the randomness of a numerical sequence
+%on the other hand. These two mathematical disciplines follow a similar 
+%objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a
+%recurrent sequence), with two different but complementary approaches.
+%It is true that the following illustrative links give only qualitative arguments, 
+%and proofs should be provided later to make such arguments irrefutable. However 
+%they give a first understanding of the reason why we think that chaotic properties should tend
+%to improve the statistical quality of PRNGs.
+%%
+%Let us now list some of these relations between topological properties defined in the mathematical
+%theory of chaos and tests embedded into the NIST battery. %Such relations need to be further 
+%%investigated, but they presently give a first illustration of a trend to search similar properties in the 
+%%two following fields: mathematical chaos and statistics.
+
+
+%\begin{itemize}
+%    \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must 
+%have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of
+%a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity
+%is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a
+%knowledge about the behavior of the system, that is, it never enters into a loop. A similar importance for periodicity is emphasized in
+%the two following NIST tests~\cite{Nist10}:
+%    \begin{itemize}
+%        \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
+%        \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are close one to another) in the tested sequence that would indicate a deviation from the assumption of randomness.
+%    \end{itemize}
+
+%\item \textbf{Transitivity}. This topological property previously introduced  states that the dynamical system is intrinsically complicated: it cannot be simplified into 
+%two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space. 
+%This focus on the places visited by the orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory
+%of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention 
+%is brought on the states visited during a random walk in the two tests below~\cite{Nist10}:
+%    \begin{itemize}
+%        \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk.
+%        \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence.
+%    \end{itemize}
+
+%\item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillate as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according
+%to Li-Yorke~\cite{Li75,Ruette2001}. A similar property is regarded in the following NIST test~\cite{Nist10}.
+%    \begin{itemize}
+%        \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow.
+%    \end{itemize}
+%    \item \textbf{Topological entropy}. The desire to formulate an equivalency of the thermodynamics entropy
+%has emerged both in the topological and statistical fields. Once again, a similar objective has led to two different
+%rewritting of an entropy based disorder: the famous Shannon definition of entropy is approximated in the statistical approach, 
+%whereas topological entropy is defined as follows:
+%$x,y \in \mathcal{X}$ are $\varepsilon-$\emph{separated in time $n$} if there exists $k \leqslant n$ such that $d\left(f^{(k)}(x),f^{(k)}(y)\right)>\varepsilon$. Then $(n,\varepsilon)-$separated sets are sets of points that are all $\varepsilon-$separated in time $n$, which
+%leads to the definition of $s_n(\varepsilon,Y)$, being the maximal cardinality of all $(n,\varepsilon)-$separated sets. Using these notations, 
+%the topological entropy is defined as follows: $$h_{top}(\mathcal{X},f)  = \displaystyle{\lim_{\varepsilon \rightarrow 0} \Big[ \limsup_{n \rightarrow +\infty} \dfrac{1}{n} \log s_n(\varepsilon,\mathcal{X})\Big]}.$$
+%This value measures the average exponential growth of the number of distinguishable orbit segments. 
+%In this sense, it measures the complexity of the topological dynamical system, whereas 
+%the Shannon approach comes to mind when defining the following test~\cite{Nist10}:
+%    \begin{itemize}
+%\item \textbf{Approximate Entropy Test}. Compare the frequency of the overlapping blocks of two consecutive/adjacent lengths ($m$ and $m+1$) against the expected result for a random sequence.
+%    \end{itemize}
+
+%    \item \textbf{Non-linearity, complexity}. Finally, let us remark that non-linearity and complexity are 
+%not only sought in general to obtain chaos, but they are also required for randomness, as illustrated by the two tests below~\cite{Nist10}.
+%    \begin{itemize}
+%\item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence.
+%\item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random.
+%      \end{itemize}
+%\end{itemize}
+
+
+%We have proven in our previous works~\cite{guyeux12:bc} that chaotic iterations satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques} are, among other
+%things, strongly transitive, topologically mixing, chaotic as defined by Li and Yorke,
+%and that they have a topological entropy and an exponent of Lyapunov both equal to $ln(\mathsf{N})$,
+%where $\mathsf{N}$ is the size of the iterated vector.
+%These topological properties make that we are ground to believe that a generator based on chaotic
+%iterations will probably be able to pass all the existing statistical batteries for pseudorandomness like
+%the NIST one. The following subsections, in which we prove that defective generators have their
+%statistical properties improved by chaotic iterations, show that such an assumption is true.
+
+%\subsection{Details of some Existing Generators}
+
+%The list of defective PRNGs we will use 
+%as inputs for the statistical tests to come is introduced here.
+
+%Firstly, the simple linear congruency generators (LCGs) will be used. 
+%They are defined by the following recurrence:
+%\begin{equation}
+%x^n = (ax^{n-1} + c)~mod~m,
+%\label{LCG}
+%\end{equation}
+%where $a$, $c$, and $x^0$ must be, among other things, non-negative and inferior to 
+%$m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer to two (resp. three) 
+%combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
 
-Secondly, the multiple recursive generators (MRGs) which will be used,
-are based on a linear recurrence of order 
-$k$, modulo $m$~\cite{LEcuyerS07}:
-\begin{equation}
-x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m .
-\label{MRG}
-\end{equation}
-The combination of two MRGs (referred as 2MRGs) is also used in these experiments.
+%Secondly, the multiple recursive generators (MRGs) which will be used,
+%are based on a linear recurrence of order 
+%$k$, modulo $m$~\cite{LEcuyerS07}:
+%\begin{equation}
+%x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m .
+%\label{MRG}
+%\end{equation}
+%The combination of two MRGs (referred as 2MRGs) is also used in these experiments.
 
-Generators based on linear recurrences with carry will be regarded too.
-This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
-\begin{equation}
-\label{AWC}
-\begin{array}{l}
-x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
-c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
-the SWB generator, having the recurrence:
-\begin{equation}
-\label{SWB}
-\begin{array}{l}
-x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
-c^n=\left\{
-\begin{array}{l}
-1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
-0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
-and the SWC generator, which is based on the following recurrence:
-\begin{equation}
-\label{SWC}
-\begin{array}{l}
-x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
-c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
+%Generators based on linear recurrences with carry will be regarded too.
+%This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
+%\begin{equation}
+%\label{AWC}
+%\begin{array}{l}
+%x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
+%c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
+%the SWB generator, having the recurrence:
+%\begin{equation}
+%\label{SWB}
+%\begin{array}{l}
+%x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
+%c^n=\left\{
+%\begin{array}{l}
+%1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
+%0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
+%and the SWC generator, which is based on the following recurrence:
+%\begin{equation}
+%\label{SWC}
+%\begin{array}{l}
+%x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
+%c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
 
-Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
-\begin{equation}
-x^n = x^{n-r} \oplus x^{n-k} .
-\label{GFSR}
-\end{equation}
+%Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
+%\begin{equation}
+%x^n = x^{n-r} \oplus x^{n-k} .
+%\label{GFSR}
+%\end{equation}
 
 
-Finally, the nonlinear inversive (INV) generator~\cite{LEcuyerS07} has been studied, which is:
+%Finally, the nonlinear inversive (INV) generator~\cite{LEcuyerS07} has been studied, which is:
 
-\begin{equation}
-\label{INV}
-\begin{array}{l}
-x^n=\left\{
-\begin{array}{ll}
-(a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
-a^1 & \text{if}~  z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
-
-
-
-\begin{table}
-%\renewcommand{\arraystretch}{1}
-\caption{TestU01 Statistical Test Failures}
-\label{TestU011}
-\centering
-  \begin{tabular}{lccccc}
-    \toprule
-Test name &Tests& Logistic             & XORshift      & ISAAC\\
-Rabbit                                 &       38      &21             &14     &0       \\
-Alphabit                       &       17      &16             &9      &0       \\
-Pseudo DieHARD                         &126    &0              &2      &0      \\
-FIPS\_140\_2                   &16     &0              &0      &0      \\
-SmallCrush                     &15     &4              &5      &0       \\
-Crush                          &144    &95             &57     &0       \\
-Big Crush                      &160    &125            &55     &0       \\ \hline
-Failures               &       &261            &146    &0       \\
-\bottomrule
-  \end{tabular}
-\end{table}
-
-
-
-\begin{table}
-%\renewcommand{\arraystretch}{1}
-\caption{TestU01 Statistical Test Failures for Old CI algorithms ($\mathsf{N}=4$)}
-\label{TestU01 for Old CI}
-\centering
-  \begin{tabular}{lcccc}
-    \toprule
-\multirow{3}*{Test name} & \multicolumn{4}{c}{Old CI}\\
-&Logistic& XORshift& ISAAC&ISAAC  \\ 
-&+& +& + & + \\ 
-&Logistic& XORshift& XORshift&ISAAC  \\ \cmidrule(r){2-5}
-Rabbit                                         &7      &2      &0      &0       \\
-Alphabit                               & 3     &0      &0      &0       \\
-DieHARD                        &0      &0      &0      &0      \\
-FIPS\_140\_2                   &0      &0      &0      &0      \\
-SmallCrush                             &2      &0      &0      &0       \\
-Crush                                  &47     &4      &0      &0       \\
-Big Crush                              &79     &3      &0      &0       \\ \hline
-Failures                               &138    &9      &0      &0       \\
-\bottomrule
-  \end{tabular}
-\end{table}
-
-
-
-
-
-\subsection{Statistical tests}
-\label{Security analysis}
-
-Three batteries of tests are reputed and regularly used
-to evaluate the statistical properties of newly designed pseudorandom
-number generators. These batteries are named DieHard~\cite{Marsaglia1996},
-the NIST suite~\cite{ANDREW2008}, and the most stringent one called
-TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
-
-
-
-\label{Results and discussion}
-\begin{table*}
-%\renewcommand{\arraystretch}{1}
-\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
-\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
-\centering
-  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
-    \hline\hline
-Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
-\backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB  & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
-NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15}   & 14/15 & 14/15  & 14/15 & 14/15& 14/15& 14/15 \\ \hline
-DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
-\end{tabular}
-\end{table*}
-
-Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the 
-results on the two first batteries recalled above, indicating that all the PRNGs presented
-in the previous section
-cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot 
-fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
-iterations can solve this issue.
-%More precisely, to
-%illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
-%\begin{enumerate}
-%  \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
-%  \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
-%  \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
 %\begin{equation}
+%\label{INV}
 %\begin{array}{l}
-%\left\{
-%\begin{array}{l}
-%x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
-%\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
-%\end{equation}
-%$m$ is called the \emph{functional power}.
-%\end{enumerate}
-%
-The obtained results are reproduced in Table
-\ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
-The scores written in boldface indicate that all the tests have been passed successfully, whereas an 
-asterisk ``*'' means that the considered passing rate has been improved.
-The improvements are obvious for both the ``Old CI'' and the ``New CI'' generators.
-Concerning the ``Xor CI PRNG'', the score is less spectacular. Because of a large speed improvement, the statistics
- are not as good as for the two other versions of these CIPRNGs.
-However 8 tests have been improved (with no deflation for the other results).
-
-
-\begin{table*}
-%\renewcommand{\arraystretch}{1.3}
-\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
-\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
-\centering
-  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
-    \hline
-Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
-\backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG  & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
-Old CIPRNG\\ \hline \hline
-NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}   & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
-DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} *  & \textbf{18/18} *  & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
-New CIPRNG\\ \hline \hline
-NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}  & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
-DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
-Xor CIPRNG\\ \hline\hline
-NIST & 14/15*& \textbf{15/15} *   & \textbf{15/15}   & \textbf{15/15}   & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15}  \\ \hline
-DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
-\end{tabular}
-\end{table*}
-
-
-We have then investigated in~\cite{bfg12a:ip} if it were possible to improve
-the statistical behavior of the Xor CI version by combining more than one 
-$\oplus$ operation. Results are summarized in Table~\ref{threshold}, illustrating
-the progressive increasing effects of chaotic iterations, when giving time to chaos to get settled in.
-Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained 
-using chaotic iterations on defective generators.
-
-\begin{table*}
-%\renewcommand{\arraystretch}{1.3}
-\caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
-\label{threshold}
-\centering
-  \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
-    \hline
-Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3  & MRG2 \\ \hline\hline
-Threshold  value $m$& 19 & 7  & 2& 1 & 11& 9& 3& 4\\ \hline\hline
-\end{tabular}
-\end{table*}
-
-Finally, the TestU01 battery has been launched on three well-known generators 
-(a logistic map, a simple XORshift, and the cryptographically secure ISAAC, 
-see Table~\ref{TestU011}). These results can be compared with 
-Table~\ref{TestU01 for Old CI}, which gives the scores obtained by the
-Old CI PRNG that has received these generators.
-The obvious improvement speaks for itself, and together with the other
-results recalled in this section, it reinforces the opinion that a strong
-correlation between topological properties and statistical behavior exists.
-
-
-The next subsection will now give a concrete original implementation of the Xor CI PRNG, the
-fastest generator in the chaotic iteration based family. In the remainder,
-this generator will be simply referred to as CIPRNG, or ``the proposed PRNG'', if this statement does not
-raise ambiguity.
-
+%x^n=\left\{
+%\begin{array}{ll}
+%(a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
+%a^1 & \text{if}~  z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
+
+
+
+%\begin{table}
+%%\renewcommand{\arraystretch}{1}
+%\caption{TestU01 Statistical Test Failures}
+%\label{TestU011}
+%\centering
+%  \begin{tabular}{lccccc}
+%    \toprule
+%Test name &Tests& Logistic            & XORshift      & ISAAC\\
+%Rabbit                                &       38      &21             &14     &0       \\
+%Alphabit                      &       17      &16             &9      &0       \\
+%Pseudo DieHARD                        &126    &0              &2      &0      \\
+%FIPS\_140\_2                  &16     &0              &0      &0      \\
+%SmallCrush                    &15     &4              &5      &0       \\
+%Crush                                 &144    &95             &57     &0       \\
+%Big Crush                     &160    &125            &55     &0       \\ \hline
+%Failures              &       &261            &146    &0       \\
+%\bottomrule
+%  \end{tabular}
+%\end{table}
+
+
+
+%\begin{table}
+%%\renewcommand{\arraystretch}{1}
+%\caption{TestU01 Statistical Test Failures for Old CI algorithms ($\mathsf{N}=4$)}
+%\label{TestU01 for Old CI}
+%\centering
+%  \begin{tabular}{lcccc}
+%    \toprule
+%\multirow{3}*{Test name} & \multicolumn{4}{c}{Old CI}\\
+%&Logistic& XORshift& ISAAC&ISAAC  \\ 
+%&+& +& + & + \\ 
+%&Logistic& XORshift& XORshift&ISAAC  \\ \cmidrule(r){2-5}
+%Rabbit                                        &7      &2      &0      &0       \\
+%Alphabit                              & 3     &0      &0      &0       \\
+%DieHARD                       &0      &0      &0      &0      \\
+%FIPS\_140\_2                  &0      &0      &0      &0      \\
+%SmallCrush                            &2      &0      &0      &0       \\
+%Crush                                         &47     &4      &0      &0       \\
+%Big Crush                             &79     &3      &0      &0       \\ \hline
+%Failures                              &138    &9      &0      &0       \\
+%\bottomrule
+%  \end{tabular}
+%\end{table}
+
+
+
+
+
+%\subsection{Statistical tests}
+%\label{Security analysis}
+
+%Three batteries of tests are reputed and regularly used
+%to evaluate the statistical properties of newly designed pseudorandom
+%number generators. These batteries are named DieHard~\cite{Marsaglia1996},
+%the NIST suite~\cite{ANDREW2008}, and the most stringent one called
+%TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
+
+
+
+%\label{Results and discussion}
+%\begin{table*}
+%%\renewcommand{\arraystretch}{1}
+%\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
+%\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
+%\centering
+%  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
+%    \hline\hline
+%Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
+%\backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB  & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
+%NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15}   & 14/15 & 14/15  & 14/15 & 14/15& 14/15& 14/15 \\ \hline
+%DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
+%\end{tabular}
+%\end{table*}
+
+%Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the 
+%results on the two first batteries recalled above, indicating that all the PRNGs presented
+%in the previous section
+%cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot 
+%fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
+%iterations can solve this issue.
+%%More precisely, to
+%%illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
+%%\begin{enumerate}
+%%  \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
+%%  \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
+%%  \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
+%%\begin{equation}
+%%\begin{array}{l}
+%%\left\{
+%%\begin{array}{l}
+%%x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
+%%\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
+%%\end{equation}
+%%$m$ is called the \emph{functional power}.
+%%\end{enumerate}
+%%
+%The obtained results are reproduced in Table
+%\ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
+%The scores written in boldface indicate that all the tests have been passed successfully, whereas an 
+%asterisk ``*'' means that the considered passing rate has been improved.
+%The improvements are obvious for both the ``Old CI'' and the ``New CI'' generators.
+%Concerning the ``Xor CI PRNG'', the score is less spectacular. Because of a large speed improvement, the statistics
+% are not as good as for the two other versions of these CIPRNGs.
+%However 8 tests have been improved (with no deflation for the other results).
+
+
+%\begin{table*}
+%%\renewcommand{\arraystretch}{1.3}
+%\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
+%\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
+%\centering
+%  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
+%    \hline
+%Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
+%\backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG  & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
+%Old CIPRNG\\ \hline \hline
+%NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}   & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
+%DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} *  & \textbf{18/18} *  & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
+%New CIPRNG\\ \hline \hline
+%NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}  & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
+%DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
+%Xor CIPRNG\\ \hline\hline
+%NIST & 14/15*& \textbf{15/15} *   & \textbf{15/15}   & \textbf{15/15}   & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15}  \\ \hline
+%DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
+%\end{tabular}
+%\end{table*}
+
+
+%We have then investigated in~\cite{bfg12a:ip} if it were possible to improve
+%the statistical behavior of the Xor CI version by combining more than one 
+%$\oplus$ operation. Results are summarized in Table~\ref{threshold}, illustrating
+%the progressive increasing effects of chaotic iterations, when giving time to chaos to get settled in.
+%Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained 
+%using chaotic iterations on defective generators.
+
+%\begin{table*}
+%%\renewcommand{\arraystretch}{1.3}
+%\caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
+%\label{threshold}
+%\centering
+%  \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
+%    \hline
+%Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3  & MRG2 \\ \hline\hline
+%Threshold  value $m$& 19 & 7  & 2& 1 & 11& 9& 3& 4\\ \hline\hline
+%\end{tabular}
+%\end{table*}
+
+%Finally, the TestU01 battery has been launched on three well-known generators 
+%(a logistic map, a simple XORshift, and the cryptographically secure ISAAC, 
+%see Table~\ref{TestU011}). These results can be compared with 
+%Table~\ref{TestU01 for Old CI}, which gives the scores obtained by the
+%Old CI PRNG that has received these generators.
+%The obvious improvement speaks for itself, and together with the other
+%results recalled in this section, it reinforces the opinion that a strong
+%correlation between topological properties and statistical behavior exists.
+
+
+%The next subsection will now give a concrete original implementation of the Xor CI PRNG, the
+%fastest generator in the chaotic iteration based family. In the remainder,
+%this generator will be simply referred to as CIPRNG, or ``the proposed PRNG'', if this statement does not
+%raise ambiguity.
+
+
+\section{Toward Efficiency and Improvement for CI PRNG}
 
 \subsection{First Efficient Implementation of a PRNG based on Chaotic Iterations}
 \label{sec:efficient PRNG}
@@ -1379,7 +1381,7 @@ this fast generator cannot be proven as secure.
 
 
 
-\section{Efficient PRNGs based on Chaotic Iterations on GPU}
+\subsection{Efficient PRNGs based on Chaotic Iterations on GPU}
 \label{sec:efficient PRNG gpu}
 
 In order to  take benefits from the computing power  of GPU, a program