]> AND Private Git Repository - rairo15.git/blob - stopping.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
0ad3e8a7bffba16803c5a9c8d0700e8cb6fbd0cc
[rairo15.git] / stopping.tex
1
2
3
4 Let thus be given such kind of map.
5 This article focuses on studying its iterations according to
6 the equation~(\ref{eq:asyn}) with a given strategy.
7 First of all, this can be interpreted as walking into its iteration graph 
8 where the choice of the edge to follow is decided by the strategy.
9 Notice that the iteration graph is always a subgraph of 
10 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the 
11 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. 
12 Next, if we add probabilities on the transition graph, iterations can be 
13 interpreted as Markov chains.
14
15 \begin{xpl}
16 Let us consider for instance  
17 the graph $\Gamma(f)$ defined 
18 in \textsc{Figure~\ref{fig:iteration:f*}.} and 
19 the probability function $p$ defined on the set of edges as follows:
20 $$
21 p(e) \left\{
22 \begin{array}{ll}
23 = \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
24 = \frac{1}{6} \textrm{ otherwise.}
25 \end{array}
26 \right.  
27 $$
28 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is 
29 \[
30 P=\dfrac{1}{6} \left(
31 \begin{array}{llllllll}
32 4&1&1&0&0&0&0&0 \\
33 1&4&0&0&0&1&0&0 \\
34 0&0&4&1&0&0&1&0 \\
35 0&1&1&4&0&0&0&0 \\
36 1&0&0&0&4&0&1&0 \\
37 0&0&0&0&1&4&0&1 \\
38 0&0&0&0&1&0&4&1 \\
39 0&0&0&1&0&1&0&4 
40 \end{array}
41 \right)
42 \]
43 \end{xpl}
44
45
46 % % Let us first recall the  \emph{Total Variation} distance $\tv{\pi-\mu}$,
47 % % which is defined for two distributions $\pi$ and $\mu$ on the same set 
48 % % $\Bool^n$  by:
49 % % $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ 
50 % % It is known that
51 % % $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$
52
53 % % Let then $M(x,\cdot)$ be the
54 % % distribution induced by the $x$-th row of $M$. If the Markov chain
55 % % induced by
56 % % $M$ has a stationary distribution $\pi$, then we define
57 % % $$d(t)=\max_{x\in\Bool^n}\tv{M^t(x,\cdot)-\pi}.$$
58 % Intuitively $d(t)$ is the largest deviation between
59 % the distribution $\pi$ and $M^t(x,\cdot)$, which 
60 % is the result of iterating $t$ times the function.
61 % Finally, let $\varepsilon$ be a positive number, the \emph{mixing time} 
62 % with respect to $\varepsilon$ is given by
63 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
64 % It defines the smallest iteration number 
65 % that is sufficient to obtain a deviation lesser than $\varepsilon$.
66 % Notice that the upper and lower bounds of mixing times cannot    
67 % directly be computed with eigenvalues formulae as expressed 
68 % in~\cite[Chap. 12]{LevinPeresWilmer2006}. The authors of this latter work  
69 % only consider reversible Markov matrices whereas we do no restrict our 
70 % matrices to such a form.
71
72
73
74
75
76
77
78 This section considers functions $f: \Bool^n \rightarrow \Bool^n $ 
79 issued from an hypercube where an Hamiltonian path has been removed.
80 A specific random walk in this modified hypercube is first 
81 introduced. We further detail
82 a theoretical study on the length of the path 
83 which is sufficient to follow to get a uniform distribution.
84  
85
86
87
88
89 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total
90 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
91 defined by
92 $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that
93 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if
94 $\nu$ is a distribution on $\Bool^n$, one has
95 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
96
97 Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(X,\cdot)$ is the
98 distribution induced by the $X$-th row of $P$. If the Markov chain induced by
99 $P$ has a stationary distribution $\pi$, then we define
100 $$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$
101
102 and
103
104 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
105 One can prove that
106
107 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
108
109
110
111
112 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il 
113 % un intérêt dans la preuve ensuite.}
114
115
116
117 %and
118 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
119 % One can prove that \JFc{Ou cela a-t-il été fait?}
120 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
121
122
123
124 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random
125 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
126   time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
127 (\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. 
128 In other words, the event $\{\tau = t \}$ only depends on the values of 
129 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. 
130  
131
132 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
133 random mapping representation of the Markov chain. A {\it randomized
134   stopping time} for the Markov chain is a stopping time for
135 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
136 as stationary distribution, then a {\it stationary time} $\tau$ is a
137 randomized stopping time (possibly depending on the starting position $X$),
138 such that  the distribution of $X_\tau$ is $\pi$:
139 $$\P_X(X_\tau=Y)=\pi(Y).$$
140
141
142 \begin{Theo}
143 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n}
144 \P_X(\tau > t)$.
145 \end{Theo}
146
147
148 %Let $\Bool^n$ be the set of words of length $n$. 
149 Let $E=\{(X,Y)\mid
150 X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
151 In other words, $E$ is the set of all the edges in the classical 
152 $n$-cube. 
153 Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$.
154 Intuitively speaking $h$ aims at memorizing for each node 
155 $X \in \Bool^n$ which edge is removed in the Hamiltonian cycle,
156 \textit{i.e.} which bit in $\llbracket 1, n \rrbracket$ 
157 cannot be switched.
158
159
160
161 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
162 0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, 
163 \textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$ 
164 has been removed.
165
166 We define the Markov matrix $P_h$ for each line $X$ and 
167 each column $Y$  as follows:
168 $$\left\{
169 \begin{array}{ll}
170 P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\
171 P_h(X,Y)=0 & \textrm{if  $(X,Y)\notin E_h$}\\
172 P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
173 \end{array}
174 \right.
175 $$ 
176
177 We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function 
178 such that for any $X \in \Bool^n $, 
179 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$. 
180 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$,
181 $\ov{h}(\ov{h}(X))\neq X$. 
182
183 \begin{Lemma}\label{lm:h}
184 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
185 \end{Lemma}
186
187 \begin{proof}
188 Let $\ov{h}$ be bijective.
189 Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
190 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and 
191 $\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$.
192 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
193 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and 
194 $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$.
195 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
196 This contradicts the square-freeness of $\ov{h}$.
197 \end{proof}
198
199 Let $Z$ be a random variable that is uniformly distributed over
200 $\llbracket 1, n \rrbracket \times \Bool$.
201 For $X\in \Bool^n$, we
202 define, with $Z=(i,b)$,  
203 $$
204 \left\{
205 \begin{array}{ll}
206 f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
207 f(X,Z)=X& \text{otherwise.} 
208 \end{array}\right.
209 $$
210
211 The Markov chain is thus defined as 
212 $$
213 X_t= f(X_{t-1},Z_t)
214 $$
215
216
217
218 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
219 %\section{Stopping time}
220
221 An integer $\ell\in \llbracket 1,n \rrbracket$ is said {\it fair} 
222 at time $t$ if there
223 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
224 In other words, there exist a date $j$ before $t$ where 
225 the first element of the random variable $Z$ is exactly $l$ 
226 (\textit{i.e.}, $l$ is the strategy at date $j$) 
227 and where the configuration $X_j$ allows to traverse the edge $l$.  
228  
229 Let $\ts$ be the first time all the elements of $\llbracket 1, n \rrbracket$
230 are fair. The integer $\ts$ is a randomized stopping time for
231 the Markov chain $(X_t)$.
232
233
234 \begin{Lemma}
235 The integer $\ts$ is a strong stationary time.
236 \end{Lemma}
237
238 \begin{proof}
239 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
240 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
241 such that 
242 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
243 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
244 bit of $X_{\tau_\ell}$ 
245 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
246
247  Moving next in the chain, at each step,
248 the $l$-th bit  is switched from $0$ to $1$ or from $1$ to $0$ each time with
249 the same probability. Therefore,  for $t\geq \tau_\ell$, the
250 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
251 lemma.\end{proof}
252
253 \begin{Theo} \label{prop:stop}
254 If $\ov{h}$ is bijective and square-free, then
255 $E[\ts]\leq 8n^2+ n\ln (n+1)$. 
256 \end{Theo}
257
258 For each $X\in \Bool^n$ and $\ell\in\llbracket 1,n\rrbracket$, 
259 let $S_{X,\ell}$ be the
260 random variable that counts the number of steps 
261 from $X$ until we reach a configuration where
262 $\ell$ is fair. More formally
263 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
264
265  We denote by
266 $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
267
268
269 \begin{Lemma}\label{prop:lambda}
270 If $\ov{h}$ is a square-free bijective function, then the inequality 
271 $E[\lambda_h]\leq 8n^2$ is established.
272
273 \end{Lemma}
274
275 \begin{proof}
276 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
277 \frac{1}{4n^2}$. 
278 Let $X_0= X$.
279 Indeed, 
280 \begin{itemize}
281 \item if $h(X)\neq \ell$, then
282 $\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. 
283 \item otherwise, $h(X)=\ell$, then
284 $\P(S_{X,\ell}=1)=0$.
285 But in this case, intutively, it is possible to move
286 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
287 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched. 
288 More formally,
289 since $\ov{h}$ is square-free,
290 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
291 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
292 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2N}$. Now, by Lemma~\ref{lm:h},
293 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
294 X_1=\ov{h}^{-1}(X))=\frac{1}{2N}$, proving that $\P(S_{x,\ell}\leq 2)\geq
295 \frac{1}{4N^2}$.
296 \end{itemize}
297
298
299
300
301 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4n^2}$. By induction, one
302 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
303 \left(1-\frac{1}{4n^2}\right)^i$.
304  Moreover,
305 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
306 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
307 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
308 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
309 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
310 Consequently,
311 $$E[S_{X,\ell}]\leq 1+1+2
312 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=2+2(4n^2-1)=8n^2,$$
313 which concludes the proof.
314 \end{proof}
315
316 Let $\ts^\prime$ be the first time that there are exactly $n-1$ fair
317 elements. 
318
319 \begin{Lemma}\label{lm:stopprime}
320 One has $E[\ts^\prime]\leq n \ln (n+1).$
321 \end{Lemma}
322
323 \begin{proof}
324 This is a classical  Coupon Collector's like problem. Let $W_i$ be the
325 random variable counting the number of moves done in the Markov chain while
326 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$.
327  But when we are at position $X$ with $i-1$ fair bits, the probability of
328  obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair,
329  or  $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that 
330 $E[W_i]\leq \frac{n}{n-i+2}$. Therefore
331 $$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1}
332  \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$
333
334 But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that
335 $1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$
336 Consequently,
337 $E[\ts^\prime]\leq n (-\frac{1}{2}+\ln(n+1))\leq n\ln(n+1)$.
338 \end{proof}
339
340 One can now prove Theorem~\ref{prop:stop}.
341
342 \begin{proof}
343 One has $\ts\leq \ts^\prime+\lambda_h$. Therefore,
344 Theorem~\ref{prop:stop} is a direct application of
345 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
346 \end{proof}
347
348 Notice that the calculus of the stationary time upper bound is obtained
349 under the following constraint: for each vertex in the $\mathsf{N}$-cube 
350 there are one ongoing arc and one outgoing arc that are removed. 
351 The calculus does not consider (balanced) hamiltonian cycles, which 
352 are more regular and more binding than this constraint.
353 In this later context, we claim that the upper bound for the stopping time 
354 should be reduced.