]> AND Private Git Repository - rairo15.git/blob - prng.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
debut d'experimentations
[rairo15.git] / prng.tex
1 Let us finally present the pseudorandom number generator $\chi_{\textit{15Rairo}}$
2 which is based on random walks in $\Gamma_{\{b\}}(f)$. 
3 More precisely, let be given a Boolean map $f:\Bool^{\mathsf{N}} \rightarrow 
4 \Bool^\mathsf{N}$,
5 a PRNG \textit{Random},
6 an integer $b$ that corresponds an iteration number (\textit{i.e.}, the length of the walk), and 
7 an initial configuration $x^0$. 
8 Starting from $x^0$, the algorithm repeats $b$ times 
9 a random choice of which edge to follow and traverses this edge 
10 provided it is allowed to traverse it, \textit{i.e.}, 
11 when $\textit{Random}(1)$ is not null. 
12 The final configuration is thus outputted.
13 This PRNG is formalized in Algorithm~\ref{CI Algorithm}.
14
15
16
17 \begin{algorithm}[ht]
18 %\begin{scriptsize}
19 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($n$ bits)}
20 \KwOut{a configuration $x$ ($n$ bits)}
21 $x\leftarrow x^0$\;
22 \For{$i=0,\dots,b-1$}
23 {
24 \If{$\textit{Random}(1) \neq 0$}{
25 $s\leftarrow{\textit{Random}(n)}$\;
26 $x\leftarrow{F_f(s,x)}$\;
27 }
28 }
29 return $x$\;
30 %\end{scriptsize}
31 \caption{Pseudo Code of the $\chi_{\textit{15Rairo}}$ PRNG}
32 \label{CI Algorithm}
33 \end{algorithm}
34
35
36 This PRNG is slightly different from $\chi_{\textit{14Secrypt}}$
37 recalled in Algorithm~\ref{CI Algorithm}.
38 As this latter, the length of the random 
39 walk of our algorithm is always constant (and is equal to $b$). 
40 However, in the current version, we add the constraint that   
41 the probability to execute the function $F_f$ is equal to 0.5 since
42 the output of $\textit{Random(1)}$ is uniform in $\{0,1\}$.  
43 This constraint is added to match the theoretical framework of 
44 Sect.~\ref{sec:hypercube}.
45
46
47
48 Notice that the chaos property of $G_f$ given in Sect.\ref{sec:proofOfChaos}
49 only requires that the graph $\Gamma_{\{b\}}(f)$ is strongly connected.
50 Since the $\chi_{\textit{15Rairo}}$ algorithme 
51 only adds propbability constraints on existing edges, 
52 it preserves this property. 
53
54