4 \usepackage{subcaption}
8 %\usepackage[font=footnotesize]{subfig}
11 \usepackage{algorithm2e}
13 %\usepackage{ntheorem}
15 \usepackage[utf8]{inputenc}
16 \usepackage[T1]{fontenc}
17 \usepackage[english]{babel}
18 \usepackage{amsmath,amssymb,latexsym,eufrak,euscript}
19 \usepackage{pstricks,pst-node,pst-coil}
23 \usepackage{pgflibrarysnakes}
27 \usetikzlibrary{arrows}
28 \usetikzlibrary{automata}
29 \usetikzlibrary{snakes}
30 \usetikzlibrary{shapes}
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 % Définitions personnelles
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 \definecolor{bleuclair}{rgb}{0.75,0.75,1.0}
38 \newcommand{\ANNOT}[1]{
42 \large\fcolorbox{black}{bleuclair}{
43 \begin{minipage}[h]{.8\linewidth}
53 \newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}}
58 \def \ts {\tau_{\rm stop}}
61 \newtheorem{Def}{Definition}
62 %\newtheorem{Lemma}{\underline{Lemma}}
63 \newtheorem{Theo}{Theorem}
64 \newtheorem{Corollary}{Corollary}
65 \newtheorem{Lemma}{Lemma}
66 \newtheorem{proposition}{Proposition}
67 \newtheorem*{xpl}{Running Example}
69 \newcommand{\vectornorm}[1]{\ensuremath{\left|\left|#1\right|\right|_2}}
70 %\newcommand{\ie}{\textit{i.e.}}
71 \newcommand{\Nats}[0]{\ensuremath{\mathbb{N}}}
72 \newcommand{\R}[0]{\ensuremath{\mathbb{R}}}
73 \newcommand{\Z}[0]{\ensuremath{\mathbb{Z}}}
74 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
75 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
76 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
79 \newcommand{\JFC}[1]{\begin{color}{green}\textit{#1}\end{color}}
80 \newcommand{\CG}[1]{\begin{color}{blue}\textit{}\end{color}}
81 \newcommand{\og}[0]{``}
82 \newcommand{\fg}[1]{''}
89 \title{Random Walk in a N-cube Without Hamiltonian Cycle
90 to Chaotic Pseudorandom Number Generation: Theoretical and Practical
95 \author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrille Heam}
96 \address{FEMTO-ST Institute, University of Franche-Comté, Belfort, France}
98 \keywords{Pseudorandom Number Generator, Theory of Chaos, Markov Matrice, Hamiltonian Path, Mixing Time, Stopping Time, Statistical Test}
100 \subjclass{34C28, 37A25,11K45}
103 This paper is dedicated to the design of chaotic random generators
104 and extends previous works proposed by some of the authors.
105 We propose a theoretical framework proving both the chaotic properties and
106 that the limit distribution is uniform.
107 A theoretical bound on the stationary time is given and
108 practical experiments show that the generators successfully pass
109 the classical statistical tests.
114 \section{Introduction}
117 \section{\uppercase{Preliminaries}}\label{sec:preliminaries}
118 \input{preliminaries}
120 \section{Proof Of Chaos}\label{sec:proofOfChaos}
123 \section{Functions with Strongly Connected $\Gamma_{\{b\}}(f)$}\label{sec:SCCfunc}
126 \section{Stopping Time}\label{sec:hypercube}
129 \section{Experiments}\label{sec:prng}
137 %\acknowledgements{...}
139 \bibliographystyle{alpha}
140 \bibliography{biblio}