5 \usepackage[font=footnotesize]{subfig}
8 \usepackage{algorithm2e}
9 \usepackage[hyperfirst=true,nogroupskip,nonumberlist,xindy]{glossaries}
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 % Définitions personnelles
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 \definecolor{bleuclair}{rgb}{0.75,0.75,1.0}
18 \newcommand{\ANNOT}[1]{
22 \large\fcolorbox{black}{bleuclair}{
23 \begin{minipage}[h]{.8\linewidth}
31 % \theoremstyle{plain}
32 % \theoremheaderfont{\normalfont\bfseries\sc}
33 % \theorembodyfont{\slshape}
34 % \theoremsymbol{\ensuremath{\diamondsuit}}
35 % \theoremprework{\bigskip}
36 % \theoremseparator{.}
37 \newtheorem{Def}{\underline{Définition}}
38 \newtheorem{Lemma}{\underline{Lemme}}
39 \newtheorem{Theo}{\underline{Théorème}}
40 % \theoremheaderfont{\sc}
41 % \theorembodyfont{\upshape}
42 % \theoremstyle{nonumberplain}
44 % \theoremsymbol{\rule{1ex}{1ex}}
45 \newtheorem{Proof}{Preuve :}
46 \newtheorem{xpl}{Exemple illustratif :}
48 \newcommand{\vectornorm}[1]{\ensuremath{\left|\left|#1\right|\right|_2}}
49 %\newcommand{\ie}{\textit{i.e.}}
50 \newcommand{\Nats}[0]{\ensuremath{\mathbb{N}}}
51 \newcommand{\R}[0]{\ensuremath{\mathbb{R}}}
52 \newcommand{\Z}[0]{\ensuremath{\mathbb{Z}}}
53 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
54 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
55 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
58 \newcommand{\JFC}[1]{\begin{color}{green}\textit{}\end{color}}
59 \newcommand{\CG}[1]{\begin{color}{blue}\textit{}\end{color}}
60 \newcommand{\og}[0]{``}
61 \newcommand{\fg}[1]{''}
67 \loadglsentries{glossaire}
74 \author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrile Heam}
75 \address{Institut FEMTO-ST, Université de Franche-Comté, Belfort, France}
77 \author{Sylvain Contassot-Vivier}
78 \address{Loria - UMR 7503, Université de Lorraine, Nancy, France}
83 This paper extends the results presented in~\cite{bcgr11ip}
84 and~\cite{chgw14oip} by using the \emph{chaotic} updating mode, in the sense
85 of F. Robert~\cite{Robert}. In this mode, several components of the system
86 may be updated at each iteration. At the theoretical level, we show that
87 the properties of chaos and uniformity of the obtained PRNG are preserved.
88 At the practical level, we show that the algorithm that builds strongly
89 connected iteration graphs, with doubly stochastic Markov matrix, has a
93 \section{Introduction}
96 \section{Préliminaires}
100 \section{Caractérisation des systèmes dynamiques booléens chaotiques}
101 \label{section:caracterisation}
105 \section{Application à la génération de nombres pseudo-aléatoires}
106 \label{section:genpa}
110 \section{Expérimentations}
111 \label{section:expes}
117 %\acknowledgements{...}
119 \appendix%\begin{annex}
120 \section{Preuve de continuité de $G_f$ dans $(\mathcal{X},d)$}
122 \input{annexecontinuite}
127 \bibliography{biblio}