1 This section considers functions $f: \Bool^n \rightarrow \Bool^n $
2 issued from an hypercube where an Hamiltonian path has been removed.
3 A specific random walk in this modified hypercube is first
4 introduced. We further detail
5 a theoretical study on the length of the path
6 which is sufficient to follow to get a uniform distribution.
12 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total
13 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
15 $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that
16 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$ Moreover, if
17 $\nu$ is a distribution on $\Bool^n$, one has
18 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
20 Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the
21 distribution induced by the $x$-th row of $P$. If the Markov chain induced by
22 $P$ has a stationary distribution $\pi$, then we define
23 $$d(t)=\max_{x\in\Bool^n}\tv{P^t(x,\cdot)-\pi}.$$
24 It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
25 un intérêt dans la preuve ensuite.}
30 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
31 % One can prove that \JFc{Ou cela a-t-il été fait?}
32 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
36 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random
37 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
38 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
39 (\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
40 In other words, the event $\{\tau = t \}$ only depends on the values of
41 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
44 \JFC{Je ne comprends pas la definition de randomized stopping time, Peut-on enrichir ?}
46 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
47 random mapping representation of the Markov chain. A {\it randomized
48 stopping time} for the Markov chain is a stopping time for
49 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
50 as stationary distribution, then a {\it stationary time} $\tau$ is a
51 randomized stopping time (possibly depending on the starting position $x$),
52 such that the distribution of $X_\tau$ is $\pi$:
53 $$\P_x(X_\tau=y)=\pi(y).$$
56 \JFC{Ou ceci a-t-il ete prouvé}
58 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{x\in\Bool^n}
63 %Let $\Bool^n$ be the set of words of length $n$.
65 x\in \Bool^n, y\in \Bool^n,\ x=y \text{ or } x\oplus y \in 0^*10^*\}$.
66 In other words, $E$ is the set of all the edges in the classical
68 Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$.
69 Intuitively speaking $h$ aims at memorizing for each node
70 $x \in \Bool^n$ which edge is removed in the Hamiltonian cycle,
71 \textit{i.e.} which bit in $\llbracket 1, n \rrbracket$
76 We denote by $E_h$ the set $E\setminus\{(x,y)\mid x\oplus y =
77 0^{n-h(x)}10^{h(x)-1}\}$. This is the set of the modified hypercube,
78 \textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$
81 We define the Markov matrix $P_h$ for each line $x$ and
82 each column $y$ as follows:
85 P_h(x,x)=\frac{1}{2}+\frac{1}{2n} & \\
86 P_h(x,y)=0 & \textrm{if $(x,y)\notin E_h$}\\
87 P_h(x,y)=\frac{1}{2n} & \textrm{if $x\neq y$ and $(x,y) \in E_h$}
92 We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function
93 such that for any $x \in \Bool^n $,
94 $(x,\ov{h}(x)) \in E$ and $x\oplus\ov{h}(x)=0^{n-h(x)}10^{h(x)-1}$.
95 The function $\ov{h}$ is said {\it square-free} if for every $x\in \Bool^n$,
96 $\ov{h}(\ov{h}(x))\neq x$.
98 \begin{Lemma}\label{lm:h}
99 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(x))\neq h(x)$.
103 \JFC{ecrire la preuve}
106 Let $Z$ be a random variable over
107 $\llbracket 1, n \rrbracket \times\{0,1\}$ uniformly distributed.
108 For $X\in \Bool^n$, we
109 define, with $Z=(i,x)$,
113 f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } x=1 \text{ and } i\neq h(X),\\
114 f(X,Z)=X& \text{otherwise.}
118 The pair $f,Z$ is a random mapping representation of $P_h$.
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
124 \section{Stopping time}
126 An integer $\ell\in\{1,\ldots,n\}$ is said {\it fair} at time $t$ if there
127 exists $0\leq j <t$ such that $Z_j=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
130 Let $\ts$ be the first time all the elements of $\{1,\ldots,n\}$
131 are fair. The integer $\ts$ is a randomized stopping time for
132 the Markov chain $(X_t)$.
136 The integer $\ts$ is a strong stationary time.
140 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
141 $Z_{\tau_\ell-1}$ is of the form $(\ell,\delta)$ with $\delta\in\{0,1\}$ and
142 $\delta=1$ with probability $\frac{1}{2}$ and $\delta=0$ with probability
143 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
144 bit of $X_{\tau_\ell}$ is $\delta$. By symmetry, for $t\geq \tau_\ell$, the
145 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
149 \begin{Theo} \label{prop:stop}
150 If $\ov{h}$ is bijective and square-free, then
151 $E[\ts]\leq 8n^2+ n\ln (n+1)$.
154 For each $x\in \Bool^n$ and $\ell\in\{1,\ldots,n\}$, let $S_{x,\ell}$ be the
155 random variable counting the number of steps done until reaching from $x$ a state where
156 $\ell$ is fair. More formally
157 $$S_{x,\ell}=\min \{m \geq 1\mid h(X_m)\neq \ell\text{ and }Z_m=\ell\text{ and } X_0=x\}.$$
160 $$\lambda_h=\max_{x,\ell} S_{x,\ell}.$$
163 \begin{Lemma}\label{prop:lambda}
164 If $\ov{h}$ is a square-free bijective function, then one has $E[\lambda_h]\leq 8n^2.$
168 For every $x$, every $\ell$, one has $\P(S_{x,\ell})\leq 2)\geq
169 \frac{1}{4n^2}$. Indeed, if $h(x)\neq \ell$, then
170 $\P(S_{x,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(x)=\ell$, then
171 $\P(S_{x,\ell}=1)=0$. Let $X_0=x$. Since $\ov{h}$ is square-free,
172 $\ov{h}(\ov{h}^{-1}(x))\neq x$. It follows that $(x,\ov{h}^{-1}(x))\in E_h$.
173 Therefore $P(X_1=\ov{h}^{-1}(x))=\frac{1}{2n}$. now,
174 by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(x))\neq h(x)$. Therefore
175 $\P(S_{x,\ell}=2\mid X_1=\ov{h}^{-1}(x))=\frac{1}{2n}$, proving that
176 $\P(S_{x,\ell}\leq 2)\geq \frac{1}{4n^2}$.
178 Therefore, $\P(S_{x,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one
179 has, for every $i$, $\P(S_{x,\ell}\geq 2i)\leq
180 \left(1-\frac{1}{4n^2}\right)^i$.
182 since $S_{x,\ell}$ is positive, it is known~\cite[lemma 2.9]{}, that
183 $$E[S_{x,\ell}]=\sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq i).$$
184 Since $\P(S_{x,\ell}\geq i)\geq \P(S_{x,\ell}\geq i+1)$, one has
185 $$E[S_{x,\ell}]=\sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq i)\leq
186 \P(S_{x,\ell}\geq 1)+2 \sum_{i=1}^{+\infty}\P(S_{x,\ell}\geq 2i).$$
188 $$E[S_{x,\ell}]\leq 1+2
189 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=1+2(4n^2-1)=8n^2-2,$$
190 which concludes the proof.
193 Let $\ts^\prime$ be the first time that there are exactly $n-1$ fair
196 \begin{Lemma}\label{lm:stopprime}
197 One has $E[\ts^\prime]\leq n \ln (n+1).$
201 This is a classical Coupon Collector's like problem. Let $W_i$ be the
202 random variable counting the number of moves done in the Markov chain while
203 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$.
204 But when we are at position $x$ with $i-1$ fair bits, the probability of
205 obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(x)$ is fair,
206 or $1-\frac{i-2}{n}$ if $h(x)$ is not fair. It follows that
207 $E[W_i]\leq \frac{n}{n-i+2}$. Therefore
208 $$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1}
209 \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$
211 But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that
212 $1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$
214 $E[\ts^\prime]\leq n (-\frac{1}{2}+\ln(n+1))\leq n\ln(n+1)$.
217 One can now prove Theo~\ref{prop:stop}.
220 One has $\ts\leq \ts^\prime+\lambda_h$. Therefore,
221 Theorem~\ref{prop:stop} is a direct application of
222 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.