1 This section considers functions $f: \Bool^n \rightarrow \Bool^n $
2 issued from an hypercube where an Hamiltonian path has been removed.
3 A specific random walk in this modified hypercube is first
4 introduced. We further detail
5 a theoretical study on the length of the path
6 which is sufficient to follow to get a uniform distribution.
12 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total
13 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
15 $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that
16 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if
17 $\nu$ is a distribution on $\Bool^n$, one has
18 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
20 Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(X,\cdot)$ is the
21 distribution induced by the $X$-th row of $P$. If the Markov chain induced by
22 $P$ has a stationary distribution $\pi$, then we define
23 $$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$
27 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
30 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
35 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
36 % un intérêt dans la preuve ensuite.}
41 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
42 % One can prove that \JFc{Ou cela a-t-il été fait?}
43 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
47 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random
48 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
49 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
50 (\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
51 In other words, the event $\{\tau = t \}$ only depends on the values of
52 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
55 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
56 random mapping representation of the Markov chain. A {\it randomized
57 stopping time} for the Markov chain is a stopping time for
58 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
59 as stationary distribution, then a {\it stationary time} $\tau$ is a
60 randomized stopping time (possibly depending on the starting position $X$),
61 such that the distribution of $X_\tau$ is $\pi$:
62 $$\P_X(X_\tau=Y)=\pi(Y).$$
66 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n}
71 %Let $\Bool^n$ be the set of words of length $n$.
73 X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
74 In other words, $E$ is the set of all the edges in the classical
76 Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$.
77 Intuitively speaking $h$ aims at memorizing for each node
78 $X \in \Bool^n$ which edge is removed in the Hamiltonian cycle,
79 \textit{i.e.} which bit in $\llbracket 1, n \rrbracket$
84 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
85 0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube,
86 \textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$
89 We define the Markov matrix $P_h$ for each line $X$ and
90 each column $Y$ as follows:
93 P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\
94 P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\
95 P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
100 We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function
101 such that for any $X \in \Bool^n $,
102 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$.
103 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$,
104 $\ov{h}(\ov{h}(X))\neq X$.
106 \begin{Lemma}\label{lm:h}
107 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
111 Let $\ov{h}$ be bijective.
112 Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
113 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and
114 $\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$.
115 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
116 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and
117 $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$.
118 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
119 This contradicts the square-freeness of $\ov{h}$.
122 Let $Z$ be a random variable that is uniformly distributed over
123 $\llbracket 1, n \rrbracket \times \Bool$.
124 For $X\in \Bool^n$, we
125 define, with $Z=(i,b)$,
129 f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
130 f(X,Z)=X& \text{otherwise.}
134 The Markov chain is thus defined as
141 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
142 %\section{Stopping time}
144 An integer $\ell\in \llbracket 1,n \rrbracket$ is said {\it fair}
146 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
147 In other words, there exist a date $j$ before $t$ where
148 the first element of the random variable $Z$ is exactly $l$
149 (\textit{i.e.}, $l$ is the strategy at date $j$)
150 and where the configuration $X_j$ allows to traverse the edge $l$.
152 Let $\ts$ be the first time all the elements of $\llbracket 1, n \rrbracket$
153 are fair. The integer $\ts$ is a randomized stopping time for
154 the Markov chain $(X_t)$.
158 The integer $\ts$ is a strong stationary time.
162 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
163 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
165 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
166 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
167 bit of $X_{\tau_\ell}$
168 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
170 Moving next in the chain, at each step,
171 the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with
172 the same probability. Therefore, for $t\geq \tau_\ell$, the
173 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
176 \begin{Theo} \label{prop:stop}
177 If $\ov{h}$ is bijective and square-free, then
178 $E[\ts]\leq 8n^2+ n\ln (n+1)$.
181 For each $X\in \Bool^n$ and $\ell\in\llbracket 1,n\rrbracket$,
182 let $S_{X,\ell}$ be the
183 random variable that counts the number of steps
184 from $X$ until we reach a configuration where
185 $\ell$ is fair. More formally
186 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
189 $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
192 \begin{Lemma}\label{prop:lambda}
193 If $\ov{h}$ is a square-free bijective function, then the inequality
194 $E[\lambda_h]\leq 8n^2$ is established.
199 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
204 \item if $h(X)\neq \ell$, then
205 $\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$.
206 \item otherwise, $h(X)=\ell$, then
207 $\P(S_{X,\ell}=1)=0$.
208 But in this case, intutively, it is possible to move
209 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
210 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched.
212 since $\ov{h}$ is square-free,
213 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
214 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
215 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2N}$. Now, by Lemma~\ref{lm:h},
216 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
217 X_1=\ov{h}^{-1}(X))=\frac{1}{2N}$, proving that $\P(S_{x,\ell}\leq 2)\geq
224 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4n^2}$. By induction, one
225 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
226 \left(1-\frac{1}{4n^2}\right)^i$.
228 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
229 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
230 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
231 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
232 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
234 $$E[S_{X,\ell}]\leq 1+1+2
235 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=2+2(4n^2-1)=8n^2,$$
236 which concludes the proof.
239 Let $\ts^\prime$ be the first time that there are exactly $n-1$ fair
242 \begin{Lemma}\label{lm:stopprime}
243 One has $E[\ts^\prime]\leq n \ln (n+1).$
247 This is a classical Coupon Collector's like problem. Let $W_i$ be the
248 random variable counting the number of moves done in the Markov chain while
249 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$.
250 But when we are at position $X$ with $i-1$ fair bits, the probability of
251 obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair,
252 or $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that
253 $E[W_i]\leq \frac{n}{n-i+2}$. Therefore
254 $$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1}
255 \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$
257 But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that
258 $1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$
260 $E[\ts^\prime]\leq n (-\frac{1}{2}+\ln(n+1))\leq n\ln(n+1)$.
263 One can now prove Theorem~\ref{prop:stop}.
266 One has $\ts\leq \ts^\prime+\lambda_h$. Therefore,
267 Theorem~\ref{prop:stop} is a direct application of
268 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.