1 In what follows, we consider the Boolean algebra on the set
2 $\Bool=\{0,1\}$ with the classical operators of conjunction '.',
3 of disjunction '+', of negation '$\overline{~}$', and of
4 disjunctive union $\oplus$.
6 Let us first introduce basic notations.
7 Let $\mathsf{N}$ be a positive integer. The set $\{1, 2, \hdots , \mathsf{N}\}$
8 of integers belonging between $1$ and $\mathsf{N}$
9 is further denoted as $\llbracket 1, \mathsf{N} \rrbracket$.
10 A {\emph{Boolean map} $f$ is
11 a function from $\Bool^{\mathsf{N}}$
14 $x=(x_1,\dots,x_{\mathsf{N}})$ maps to $f(x)=(f_1(x),\dots,f_{\mathsf{N}}(x))$.
15 In what follows, for any finite set $X$, $|X|$ denotes its cardinality and
16 $\lfloor y \rfloor$ is
17 the largest integer lower than $y$.
19 Functions are iterated as follows.
20 At the $t^{th}$ iteration, only the $s_{t}-$th component is said to be
21 ``iterated'', where $s = \left(s_t\right)_{t \in \mathds{N}}$ is a sequence of indices taken in $\llbracket 1;{\mathsf{N}} \rrbracket$ called ``strategy''.
23 let $F_f: \Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket$ to $\Bool^{\mathsf{N}}$ be defined by
25 F_f(x,i)=(x_1,\dots,x_{i-1},f_i(x),x_{i+1},\dots,x_{\mathsf{N}}).
27 Then, let $x^0\in\Bool^{\mathsf{N}}$ be an initial configuration
29 \llbracket1;{\mathsf{N}}\rrbracket^\Nats$ be a strategy,
30 the dynamics are described by the recurrence
31 \begin{equation}\label{eq:asyn}
39 Let be given a Boolean map $f$. Its associated
40 {\emph{iteration graph}} $\Gamma(f)$ is the
41 directed graph such that the set of vertices is
42 $\Bool^{\mathsf{N}}$, and for all $x\in\Bool^{\mathsf{N}}$ and $i\in \llbracket1;{\mathsf{N}}\rrbracket$,
43 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(x,i)$.
44 Each arc $(x,F_f(x,i))$ is labelled with $i$.
48 Let us consider for instance ${\mathsf{N}}=3$.
50 $f^*: \Bool^3 \rightarrow \Bool^3$ be defined by
52 (x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2},
53 \overline{x_1}\overline{x_3} + x_1x_2)$.
54 The iteration graph $\Gamma(f^*)$ of this function is given in
55 Figure~\ref{fig:iteration:f*}.
60 \includegraphics[scale=0.5]{images/iter_f0c}
62 \caption{Iteration Graph $\Gamma(f^*)$ of the function $f^*$}\label{fig:iteration:f*}
65 Let us finally recall the pseudorandom number generator $\chi_{\textit{14Secrypt}}$
66 \cite{DBLP:conf/secrypt/CouchotHGWB14}
67 formalized in Algorithm~\ref{CI Algorithm}.
68 It is based on random walks in $\Gamma(f)$.
69 More precisely, let be given a Boolean map $f:\Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$,
70 an input PRNG \textit{Random},
71 an integer $b$ that corresponds to a number of iterations, and
72 an initial configuration $x^0$.
73 Starting from $x^0$, the algorithm repeats $b$ times
74 a random choice of which edge to follow and traverses this edge.
75 The final configuration is thus outputted.
80 %\JFC{Mettre ceci dans une boite flottante}
81 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ (${\mathsf{N}}$ bits)}
82 \KwOut{a configuration $x$ (${\mathsf{N}}$ bits)}
86 $s\leftarrow{\textit{Random}({\mathsf{N}})}$\;
87 $x\leftarrow{F_f(x,s)}$\;
91 \caption{Pseudo Code of the $\chi_{\textit{14Secrypt}}$ PRNG}
97 With all this material, we can study the chaos properties of these
99 This is the aims of the next section.