1 This section considers functions $f: \Bool^n \rightarrow \Bool^n $
2 issued from an hypercube where an Hamiltonian path has been removed.
3 A specific random walk in this modified hypercube is first
4 introduced. We further detail
5 a theoretical study on the length of the path
6 which is sufficient to follow to get a uniform distribution.
12 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^n$. The total
13 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
15 $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ It is known that
16 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^n}|\pi(X)-\mu(X)|.$$ Moreover, if
17 $\nu$ is a distribution on $\Bool^n$, one has
18 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
20 Let $P$ be the matrix of a Markov chain on $\Bool^n$. $P(x,\cdot)$ is the
21 distribution induced by the $x$-th row of $P$. If the Markov chain induced by
22 $P$ has a stationary distribution $\pi$, then we define
23 $$d(t)=\max_{X\in\Bool^n}\tv{P^t(X,\cdot)-\pi}.$$
24 It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
25 un intérêt dans la preuve ensuite.}
30 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
31 % One can prove that \JFc{Ou cela a-t-il été fait?}
32 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
36 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^n$ valued random
37 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
38 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
39 (\Bool^n)^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
40 In other words, the event $\{\tau = t \}$ only depends on the values of
41 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
44 \JFC{Je ne comprends pas la definition de randomized stopping time, Peut-on enrichir ?}
46 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
47 random mapping representation of the Markov chain. A {\it randomized
48 stopping time} for the Markov chain is a stopping time for
49 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
50 as stationary distribution, then a {\it stationary time} $\tau$ is a
51 randomized stopping time (possibly depending on the starting position $X$),
52 such that the distribution of $X_\tau$ is $\pi$:
53 $$\P_X(X_\tau=Y)=\pi(Y).$$
56 \JFC{Ou ceci a-t-il ete prouvé. On ne définit pas ce qu'est un strong stationary time.}
58 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^n}
63 %Let $\Bool^n$ be the set of words of length $n$.
65 X\in \Bool^n, Y\in \Bool^n,\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
66 In other words, $E$ is the set of all the edges in the classical
68 Let $h$ be a function from $\Bool^n$ into $\llbracket 1, n \rrbracket$.
69 Intuitively speaking $h$ aims at memorizing for each node
70 $X \in \Bool^n$ which edge is removed in the Hamiltonian cycle,
71 \textit{i.e.} which bit in $\llbracket 1, n \rrbracket$
76 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
77 0^{n-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube,
78 \textit{i.e.}, the $n$-cube where the Hamiltonian cycle $h$
81 We define the Markov matrix $P_h$ for each line $X$ and
82 each column $Y$ as follows:
85 P_h(X,X)=\frac{1}{2}+\frac{1}{2n} & \\
86 P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\
87 P_h(X,Y)=\frac{1}{2n} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
92 We denote by $\ov{h} : \Bool^n \rightarrow \Bool^n$ the function
93 such that for any $X \in \Bool^n $,
94 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1}$.
95 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^n$,
96 $\ov{h}(\ov{h}(X))\neq X$.
98 \begin{Lemma}\label{lm:h}
99 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
103 Let $\ov{h}$ be bijective.
104 Let $k\in \llbracket 1, n \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
105 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and
106 $\ov{h}^{-1}(X)\oplus X = 0^{n-k}10^{k-1}$.
107 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
108 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and
109 $X\oplus\ov{h}(X)=0^{n-h(X)}10^{h(X)-1} = 0^{n-k}10^{k-1}$.
110 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
111 This contradicts the square-freeness of $\ov{h}$.
114 Let $Z$ be a random variable that is uniformly distributed over
115 $\llbracket 1, n \rrbracket \times \Bool$.
116 For $X\in \Bool^n$, we
117 define, with $Z=(i,b)$,
121 f(X,Z)=X\oplus (0^{n-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
122 f(X,Z)=X& \text{otherwise.}
126 The Markov chain is thus defined as
131 The pair $(f,Z)$ is a random mapping representation of $P_h$.
132 \JFC{interet de la phrase precedente}
136 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
137 %\section{Stopping time}
139 An integer $\ell\in \llbracket 1,n \rrbracket$ is said {\it fair}
141 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
142 In other words, there exist a date $j$ before $t$ where
143 the first element of the random variable $Z$ is exactly $l$
144 (\textit{i.e.}, $l$ is the strategy at date $j$)
145 and where the configuration $X_j$ allows to traverse the edge $l$.
147 Let $\ts$ be the first time all the elements of $\llbracket 1, n \rrbracket$
148 are fair. The integer $\ts$ is a randomized stopping time for
149 the Markov chain $(X_t)$.
153 The integer $\ts$ is a strong stationary time.
157 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
158 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
160 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
161 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
162 bit of $X_{\tau_\ell}$
163 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
164 By symmetry, \JFC{Je ne comprends pas ce by symetry} for $t\geq \tau_\ell$, the
165 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
169 \begin{Theo} \label{prop:stop}
170 If $\ov{h}$ is bijective and square-free, then
171 $E[\ts]\leq 8n^2+ n\ln (n+1)$.
174 For each $X\in \Bool^n$ and $\ell\in\llbracket 1,n\rrbracket$,
175 let $S_{X,\ell}$ be the
176 random variable that counts the number of steps
177 from $X$ until we reach a configuration where
178 $\ell$ is fair. More formally
179 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
182 $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
185 \begin{Lemma}\label{prop:lambda}
186 If $\ov{h}$ is a square-free bijective function, then the inequality
187 $E[\lambda_h]\leq 8n^2$ is established.
192 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
193 \frac{1}{4n^2}$. Indeed, if $h(X)\neq \ell$, then
194 $\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(X)=\ell$, then
195 $\P(S_{X,\ell}=1)=0$. Let $X_0=X$. Since $\ov{h}$ is square-free,
196 $\ov{h}(\ov{h}^{-1}(X))\neq X$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$.
197 Therefore $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$. now,
198 by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore
199 $\P(S_{X,\ell}=2\mid X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$, proving that
200 $\P(S_{X,\ell}\leq 2)\geq \frac{1}{4n^2}$.
202 Therefore, $\P(S_{X,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one
203 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
204 \left(1-\frac{1}{4n^2}\right)^i$.
206 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{}, that
207 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
208 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
209 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
210 \P(S_{X,\ell}\geq 1)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
212 $$E[S_{X,\ell}]\leq 1+2
213 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4n^2}\right)^i=1+2(4n^2-1)=8n^2-2,$$
214 which concludes the proof.
217 Let $\ts^\prime$ be the first time that there are exactly $n-1$ fair
220 \begin{Lemma}\label{lm:stopprime}
221 One has $E[\ts^\prime]\leq n \ln (n+1).$
225 This is a classical Coupon Collector's like problem. Let $W_i$ be the
226 random variable counting the number of moves done in the Markov chain while
227 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{n-1}W_i$.
228 But when we are at position $X$ with $i-1$ fair bits, the probability of
229 obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair,
230 or $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that
231 $E[W_i]\leq \frac{n}{n-i+2}$. Therefore
232 $$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1}
233 \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$
235 But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that
236 $1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$
238 $E[\ts^\prime]\leq n (-\frac{1}{2}+\ln(n+1))\leq n\ln(n+1)$.
241 One can now prove Theo~\ref{prop:stop}.
244 One has $\ts\leq \ts^\prime+\lambda_h$. Therefore,
245 Theorem~\ref{prop:stop} is a direct application of
246 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.