101 [shape="none", label="101", pos="11.7320508076,9!"];
110 [shape="none", label="110", pos="12,8!"];
111 [shape="none", label="111", pos="13.7320508076,9!"];
- // 000:nw -> 000:so [color="blue"]
- 000 -> 010;
- 000 -> 001;
- //010:ne -> 010:se [color="blue"]
- 010 -> 110;
- 010 -> 011;
- 001 -> 000;
- //001 -> 001 [color="blue"]
- 001 -> 101;
- //101 -> 101 [color="blue"]
- 101 -> 100;
- 101 -> 111;
- //110 -> 110 [color="blue"]
- 110 -> 100;
- 110 -> 111;
- 011 -> 010;
- 011 -> 001;
- //011 -> 011 [color="blue"]
- 100 -> 000;
- //100 -> 100 [color="blue"]
- 100 -> 110
- //111 -> 111 [color="blue"]
- 111 -> 011;
- 111 -> 101
+ 000:nw -> 000:w [label="1"]
+ 000 -> 010 [label="2"]
+ 000 -> 001 [label="3"]
+
+ 010 -> 010 [label="2"]
+ 010 -> 110 [label="1"]
+ 010 -> 011 [label="3"]
+
+ 001 -> 000 [label="3"]
+ 001:nw -> 001:w [label="2"]
+ 001 -> 101 [label="1"]
+
+ 101:nw -> 101:w [label="1"]
+ 101 -> 100 [label="3"]
+ 101 -> 111 [label="2"]
+
+ 110 -> 110 [label="1"]
+ 110 -> 100 [label="2"]
+ 110 -> 111 [label="3"]
+
+ 011 -> 010 [label="3"]
+ 011 -> 001 [label="2"]
+ 011 -> 011 [label="1"]
+
+ 100 -> 000 [label="1"]
+ 100:nw -> 100:w [label="3"]
+ 100 -> 110 [label="2"]
+
+ 111 -> 111 [label="3"]
+ 111 -> 011 [label="1"]
+ 111 -> 101 [label="2"]
/*
000 -> 100 [style="dashed"]
100 -> 101 [style="dashed"]
Let us consider for instance $n=3$.
Let
$f^*: \Bool^3 \rightarrow \Bool^3$ be defined by
-
$f^*(x_1,x_2,x_3) =
(x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2},
-\overline{x_1}\overline{x_3} + x_1x_2)$
-
-
+\overline{x_1}\overline{x_3} + x_1x_2)$.
The iteration graph $\Gamma(f^*)$ of this function is given in
Figure~\ref{fig:iteration:f*}.
\vspace{-1em}
\begin{figure}[ht]
\begin{center}
-\includegraphics[scale=0.5]{images/iter_f0c.eps}
+\includegraphics[scale=0.5]{images/iter_f0c}
\end{center}
\vspace{-0.5em}
\caption{Iteration Graph $\Gamma(f^*)$ of the function $f^*$}\label{fig:iteration:f*}
\end{figure}
\end{xpl}
-\vspace{-0.5em}
-It is easy to associate a Markov Matrix $M$ to such a graph $G(f)$
-as follows:
-
-$M_{ij} = \frac{1}{n}$ if there is an edge from $i$ to $j$ in $\Gamma(f)$ and $i \neq j$; $M_{ii} = 1 - \sum\limits_{j=1, j\neq i}^n M_{ij}$; and $M_{ij} = 0$ otherwise.
-
-\begin{xpl}
-The Markov matrix associated to the function $f^*$ is
-
-\[
-M=\dfrac{1}{3} \left(
-\begin{array}{llllllll}
-1&1&1&0&0&0&0&0 \\
-1&1&0&0&0&1&0&0 \\
-0&0&1&1&0&0&1&0 \\
-0&1&1&1&0&0&0&0 \\
-1&0&0&0&1&0&1&0 \\
-0&0&0&0&1&1&0&1 \\
-0&0&0&0&1&0&1&1 \\
-0&0&0&1&0&1&0&1
-\end{array}
-\right)
-\]
-
-
-
-
-
-\end{xpl}
+% \vspace{-0.5em}
+% It is easy to associate a Markov Matrix $M$ to such a graph $G(f)$
+% as follows:
+
+% $M_{ij} = \frac{1}{n}$ if there is an edge from $i$ to $j$ in $\Gamma(f)$ and $i \neq j$; $M_{ii} = 1 - \sum\limits_{j=1, j\neq i}^n M_{ij}$; and $M_{ij} = 0$ otherwise.
+
+% \begin{xpl}
+% The Markov matrix associated to the function $f^*$ is
+
+% \[
+% M=\dfrac{1}{3} \left(
+% \begin{array}{llllllll}
+% 1&1&1&0&0&0&0&0 \\
+% 1&1&0&0&0&1&0&0 \\
+% 0&0&1&1&0&0&1&0 \\
+% 0&1&1&1&0&0&0&0 \\
+% 1&0&0&0&1&0&1&0 \\
+% 0&0&0&0&1&1&0&1 \\
+% 0&0&0&0&1&0&1&1 \\
+% 0&0&0&1&0&1&0&1
+% \end{array}
+% \right)
+% \]
+%\end{xpl}
It is usual to check whether rows of such kind of matrices