]> AND Private Git Repository - rce2015.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
377a87f3cc643a33f4065fd51aaa2f7fa8e6b25a
[rce2015.git] / paper.tex
1 \documentclass[times]{cpeauth}
2
3 \usepackage{moreverb}
4
5 %\usepackage[dvips,colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red]{hyperref}
6
7 %\newcommand\BibTeX{{\rmfamily B\kern-.05em \textsc{i\kern-.025em b}\kern-.08em
8 %T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
9
10 \def\volumeyear{2015}
11
12 \usepackage{graphicx}
13 \usepackage{wrapfig}
14 \usepackage{grffile}
15
16 \usepackage[T1]{fontenc}
17 \usepackage[utf8]{inputenc}
18 \usepackage{amsfonts,amssymb}
19 \usepackage{amsmath}
20 \usepackage{algorithm}
21 \usepackage{algpseudocode}
22 %\usepackage{amsthm}
23 \usepackage{graphicx}
24 \usepackage[american]{babel}
25 % Extension pour les liens intra-documents (tagged PDF)
26 % et l'affichage correct des URL (commande \url{http://example.com})
27 %\usepackage{hyperref}
28
29 \usepackage{url}
30 \DeclareUrlCommand\email{\urlstyle{same}}
31
32 \usepackage[autolanguage,np]{numprint}
33 \AtBeginDocument{%
34   \renewcommand*\npunitcommand[1]{\text{#1}}
35   \npthousandthpartsep{}}
36
37 \usepackage{xspace}
38 \usepackage[textsize=footnotesize]{todonotes}
39
40 \newcommand{\AG}[2][inline]{%
41   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
42 \newcommand{\RC}[2][inline]{%
43   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
44 \newcommand{\LZK}[2][inline]{%
45   \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
46 \newcommand{\RCE}[2][inline]{%
47   \todo[color=yellow!10,#1]{\sffamily\textbf{RCE:} #2}\xspace}
48
49 \algnewcommand\algorithmicinput{\textbf{Input:}}
50 \algnewcommand\Input{\item[\algorithmicinput]}
51
52 \algnewcommand\algorithmicoutput{\textbf{Output:}}
53 \algnewcommand\Output{\item[\algorithmicoutput]}
54
55 \newcommand{\TOLG}{\mathit{tol_{gmres}}}
56 \newcommand{\MIG}{\mathit{maxit_{gmres}}}
57 \newcommand{\TOLM}{\mathit{tol_{multi}}}
58 \newcommand{\MIM}{\mathit{maxit_{multi}}}
59 \newcommand{\TOLC}{\mathit{tol_{cgls}}}
60 \newcommand{\MIC}{\mathit{maxit_{cgls}}}
61
62 \usepackage{array}
63 \usepackage{color, colortbl}
64 \newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}
65 \newcolumntype{Z}[1]{>{\raggedleft}m{#1}}
66
67 \newcolumntype{g}{>{\columncolor{Gray}}c}
68 \definecolor{Gray}{gray}{0.9}
69
70
71
72 \begin{document} \RCE{Titre a confirmer.} \title{Comparative performance
73 analysis of simulated grid-enabled numerical iterative algorithms}
74 %\itshape{\journalnamelc}\footnotemark[2]}
75
76 \author{    Charles Emile Ramamonjisoa and
77     David Laiymani and
78     Arnaud Giersch and
79     Lilia Ziane Khodja and
80     Raphaël Couturier
81 }
82
83 \address{
84         \centering
85     Femto-ST Institute - DISC Department\\
86     Université de Franche-Comté\\
87     Belfort\\
88     Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr}
89 }
90
91 %% Lilia Ziane Khodja: Department of Aerospace \& Mechanical Engineering\\ Non Linear Computational Mechanics\\ University of Liege\\ Liege, Belgium. Email: l.zianekhodja@ulg.ac.be
92
93 \begin{abstract}   The behavior of multicore applications is always a challenge
94 to predict, especially with a new architecture for which no experiment has been
95 performed. With some applications, it is difficult, if not impossible, to build
96 accurate performance models. That is why another solution is to use a simulation
97 tool which allows us to change many parameters of the architecture (network
98 bandwidth, latency, number of processors) and to simulate the execution of such
99 applications. We have decided to use SimGrid as it enables to benchmark MPI
100 applications.
101
102 In this paper, we focus our attention on two parallel iterative algorithms based
103 on the  Multisplitting algorithm  and we  compare them  to the  GMRES algorithm.
104 These algorithms  are used to  solve libear  systems. Two different  variantsof
105 the Multisplitting are studied: one  using synchronoous  iterations and  another
106 one  with asynchronous iterations. For each algorithm we have  tested different
107 parameters to see their influence.  We strongly  recommend people  interested
108 by investing  into a  new expensive  hardware  architecture  to   benchmark
109 their  applications  using  a simulation tool before.
110
111
112
113
114 \end{abstract}
115
116 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
117 %performance} 
118 \keywords{Multisplitting algorithms, Synchronous and asynchronous iterations, SimGrid, Simulation, Performance evaluation}
119
120 \maketitle
121
122 \section{Introduction}  The use of multi-core architectures for solving large
123 scientific problems seems to  become imperative  in  a  lot  of  cases.
124 Whatever the scale of these architectures (distributed clusters, computational
125 grids, embedded multi-core,~\ldots) they  are generally  well adapted to execute
126 complex parallel applications operating on a large amount of data.
127 Unfortunately,  users (industrials or scientists),  who need such computational
128 resources, may not have an easy access to such efficient architectures. The cost
129 of using the platform and/or the cost of  testing and deploying an application
130 are often very important. So, in this context it is difficult to optimize a
131 given application for a given  architecture. In this way and in order to reduce
132 the access cost to these computing resources it seems very interesting to use a
133 simulation environment.  The advantages are numerous: development life cycle,
134 code debugging, ability to obtain results quickly,~\ldots at the condition that
135 the simulation results are in education with the real ones.
136
137 In this paper we focus on a class of highly efficient parallel algorithms called
138 \emph{iterative algorithms}. The parallel scheme of iterative methods is quite
139 simple. It generally involves the division of the problem into  several
140 \emph{blocks}  that  will  be  solved  in  parallel  on  multiple processing
141 units.  Each processing unit has to compute an iteration, to send/receive some
142 data dependencies to/from its neighbors and to iterate this process until the
143 convergence of the method. Several well-known methods demonstrate the
144 convergence of these algorithms~\cite{BT89,bahi07}. In this processing mode a
145 task cannot begin a new iteration while it has not received data dependencies
146 from its neighbors. We say that the iteration computation follows a synchronous
147 scheme. In the asynchronous scheme a task can compute a new iteration without
148 having to wait for the data dependencies coming from its neighbors. Both
149 communication and computations are asynchronous inducing that there is no more
150 idle times, due to synchronizations, between two iterations~\cite{bcvc06:ij}.
151 This model presents some advantages and drawbacks that we detail in
152 section~\ref{sec:asynchro} but even if the number of iterations required to
153 converge is generally  greater  than for the synchronous  case, it appears that
154 the asynchronous  iterative scheme  can significantly  reduce  overall execution
155 times by  suppressing idle  times due to  synchronizations~(see~\cite{bahi07}
156 for more details).
157
158 Nevertheless, in both cases (synchronous or asynchronous) it is very time
159 consuming to find optimal configuration and deployment requirements  for a given
160 application on a given multi-core architecture. Finding good resource
161 allocations policies under varying CPU power, network speeds and  loads is very
162 challenging and labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
163 problematic is even more difficult for the asynchronous scheme  where variations
164 of the parameters of the execution platform can lead to very different number of
165 iterations required to converge and so to very different execution times. In
166 this challenging context we think that the use of a simulation tool can greatly
167 leverage the possibility of testing various platform scenarios.
168
169 The main contribution of this paper is to show that the use of a simulation tool
170 (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real  parallel
171 applications (i.e. large linear system solvers) can help developers to better
172 tune their application for a given multi-core architecture. To show the validity
173 of this approach we first compare the simulated execution of the multisplitting
174 algorithm  with  the  GMRES   (Generalized   Minimal  Residual)
175 solver~\cite{saad86} in synchronous mode. The obtained results on different
176 simulated multi-core architectures confirm the real results previously obtained
177 on non simulated architectures.  We also confirm  the efficiency  of the
178 asynchronous  multisplitting algorithm  comparing to the synchronous  GMRES. In
179 this way and with a simple computing architecture (a laptop) SimGrid allows us
180 to run a test campaign  of  a  real parallel iterative  applications on
181 different simulated multi-core architectures.  To our knowledge, there is no
182 related work on the large-scale multi-core simulation of a real synchronous and
183 asynchronous iterative application.
184
185 This paper is organized as follows. Section~\ref{sec:asynchro} presents the
186 iteration model we use and more particularly the asynchronous scheme.  In
187 section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented.
188 Section~\ref{sec:04} details the different solvers that we use.  Finally our
189 experimental results are presented in section~\ref{sec:expe} followed by some
190 concluding remarks and perspectives.
191
192
193 \section{The asynchronous iteration model}
194 \label{sec:asynchro}
195
196 \section{SimGrid}
197  \label{sec:simgrid}
198
199 %%%%%%%%%%%%%%%%%%%%%%%%%
200 %%%%%%%%%%%%%%%%%%%%%%%%%
201
202 \section{Two-stage multisplitting methods}
203 \label{sec:04}
204 \subsection{Synchronous and asynchronous two-stage methods for sparse linear systems}
205 \label{sec:04.01}
206 In this paper we focus on two-stage multisplitting methods in their both versions synchronous and asynchronous~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$
207 \begin{equation}
208 Ax=b,
209 \label{eq:01}
210 \end{equation}
211 where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). The two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows
212 \begin{equation}
213 x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots
214 \label{eq:02}
215 \end{equation}
216 where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system
217 \begin{equation}
218 A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
219 \label{eq:03}
220 \end{equation}
221 where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, is studied by many authors for example~\cite{Bru95,bahi07}.
222
223 \begin{figure}[t]
224 %\begin{algorithm}[t]
225 %\caption{Block Jacobi two-stage multisplitting method}
226 \begin{algorithmic}[1]
227   \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
228   \Output $x_\ell$ (solution vector)\vspace{0.2cm}
229   \State Set the initial guess $x^0$
230   \For {$k=1,2,3,\ldots$ until convergence}
231     \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
232     \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$\label{solve}
233     \State Send $x_\ell^k$ to neighboring clusters\label{send}
234     \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters\label{recv}
235   \EndFor
236 \end{algorithmic}
237 \caption{Block Jacobi two-stage multisplitting method}
238 \label{alg:01}
239 %\end{algorithm}
240 \end{figure}
241
242 In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on asynchronous model which allows the communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged
243 \begin{equation}
244 k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM,
245 \label{eq:04}
246 \end{equation}
247 where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm.
248
249 The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration
250 \begin{equation}
251 S=[x^1,x^2,\ldots,x^s],~s\ll n.
252 \label{eq:05}
253 \end{equation}
254 At each $s$ outer iterations, the algorithm computes a new approximation $\tilde{x}=S\alpha$ which minimizes the residual
255 \begin{equation}
256 \min_{\alpha\in\mathbb{R}^s}{\|b-AS\alpha\|_2}.
257 \label{eq:06}
258 \end{equation}
259 The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
260
261 \begin{figure}[t]
262 %\begin{algorithm}[t]
263 %\caption{Krylov two-stage method using block Jacobi multisplitting}
264 \begin{algorithmic}[1]
265   \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
266   \Output $x_\ell$ (solution vector)\vspace{0.2cm}
267   \State Set the initial guess $x^0$
268   \For {$k=1,2,3,\ldots$ until convergence}
269     \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
270     \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$
271     \State $S_{\ell,k\mod s}=x_\ell^k$
272     \If{$k\mod s = 0$}
273        \State $\alpha = Solve_{cgls}(AS,b,\MIC,\TOLC)$\label{cgls}
274        \State $\tilde{x_\ell}=S_\ell\alpha$
275        \State Send $\tilde{x_\ell}$ to neighboring clusters
276        \Else
277          \State Send $x_\ell^k$ to neighboring clusters
278     \EndIf
279     \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters
280   \EndFor
281 \end{algorithmic}
282 \caption{Krylov two-stage method using block Jacobi multisplitting}
283 \label{alg:02}
284 %\end{algorithm}
285 \end{figure}
286
287 \subsection{Simulation of two-stage methods using SimGrid framework}
288 \label{sec:04.02}
289
290 One of our objectives when simulating the application in Simgrid is, as in real life, to get accurate results (solutions of the problem) but also ensure the test reproducibility under the same conditions. According our experience, very few modifications are required to adapt a MPI program to run in Simgrid simulator using SMPI (Simulator MPI).The first modification is to include SMPI libraries and related header files (smpi.h). The second and important modification is to eliminate all global variables in moving them to local subroutine or using a Simgrid selector called "runtime automatic switching" (smpi/privatize\_global\_variables). Indeed, global variables can generate side effects on runtime between the threads running in the same process, generated by the Simgrid to simulate the grid environment.The last modification on the MPI program pointed out for some cases, the review of the sequence of the MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions which might cause an infinite loop.
291
292
293 \paragraph{Simgrid Simulator parameters}
294
295 \begin{itemize}
296         \item hostfile: Hosts description file.
297         \item plarform: File describing the platform architecture : clusters (CPU power,
298 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
299 latency lat, \dots{}).
300         \item archi   : Grid computational description (Number of clusters, Number of
301 nodes/processors for each cluster).
302 \end{itemize}
303
304
305 In addition, the following arguments are given to the programs at runtime:
306
307 \begin{itemize}
308         \item Maximum number of inner and outer iterations;
309         \item Inner and outer precisions;
310         \item Matrix size (N$_{x}$, N$_{y}$ and N$_{z}$);
311         \item Matrix diagonal value = 6.0;
312         \item Execution Mode: synchronous or asynchronous.
313 \end{itemize}
314
315 At last, note that the two solver algorithms have been executed with the Simgrid selector -cfg=smpi/running\_power which determines the computational power (here 19GFlops) of the simulator host machine.
316
317 %%%%%%%%%%%%%%%%%%%%%%%%%
318 %%%%%%%%%%%%%%%%%%%%%%%%%
319
320 \section{Experimental Results}
321 \label{sec:expe}
322
323
324 \subsection{Study setup and Simulation Methodology}
325
326 To conduct our study, we have put in place the following methodology
327 which can be reused for any grid-enabled applications.
328
329 \textbf{Step 1} : Choose with the end users the class of algorithms or
330 the application to be tested. Numerical parallel iterative algorithms
331 have been chosen for the study in this paper. \\
332
333 \textbf{Step 2} : Collect the software materials needed for the
334 experimentation. In our case, we have two variants algorithms for the
335 resolution of the 3D-Poisson problem: (1) using the classical GMRES (Algo-1); (2) and the multisplitting method (Algo-2). In addition, Simgrid simulator has been chosen to simulate the behaviors of the
336 distributed applications. Simgrid is running on the Mesocentre datacenter in Franche-Comte University but also in a virtual machine on a laptop. \\
337
338 \textbf{Step 3} : Fix the criteria which will be used for the future
339 results comparison and analysis. In the scope of this study, we retain
340 in one hand the algorithm execution mode (synchronous and asynchronous)
341 and in the other hand the execution time and the number of iterations of
342 the application before obtaining the convergence. \\
343
344 \textbf{Step 4 }: Set up the different grid testbed environments
345 which will be simulated in the simulator tool to run the program. The
346 following architecture has been configured in Simgrid : 2x16 - that is a
347 grid containing 2 clusters with 16 hosts (processors/cores) each -, 4x8,
348 4x16, 8x8 and 2x50. The network has been designed to operate with a
349 bandwidth equals to 10Gbits (resp. 1Gbits/s) and a latency of 8.10$^{-6}$
350 microseconds (resp. 5.10$^{-5}$) for the intra-clusters links (resp.
351 inter-clusters backbone links). \\
352
353 \textbf{Step 5}: Conduct an extensive and comprehensive testings
354 within these configurations in varying the key parameters, especially
355 the CPU power capacity, the network parameters and also the size of the
356 input matrix. Note that some parameters like some program input arguments should be fixed to be invariant to allow the comparison. \\
357
358 \textbf{Step 6} : Collect and analyze the output results.
359
360 \subsection{Factors impacting distributed applications performance in
361 a grid environment}
362
363 From our previous experience on running distributed application in a
364 computational grid, many factors are identified to have an impact on the
365 program behavior and performance on this specific environment. Mainly,
366 first of all, the architecture of the grid itself can obviously
367 influence the performance results of the program. The performance gain
368 might be important theoretically when the number of clusters and/or the
369 number of nodes (processors/cores) in each individual cluster increase.
370
371 Another important factor impacting the overall performance of the
372 application is the network configuration. Two main network parameters
373 can modify drastically the program output results : (i) the network
374 bandwidth (bw=bits/s) also known as "the data-carrying capacity"
375 of the network is defined as the maximum of data that can pass
376 from one point to another in a unit of time. (ii) the network latency
377 (lat : microsecond) defined as the delay from the start time to send the
378 data from a source and the final time the destination have finished to
379 receive it. Upon the network characteristics, another impacting factor
380 is the application dependent volume of data exchanged between the nodes
381 in the cluster and between distant clusters. Large volume of data can be
382 transferred and transit between the clusters and nodes during the code
383 execution.
384
385  In a grid environment, it is common to distinguish in one hand, the
386 "\,intra-network" which refers to the links between nodes within a
387 cluster and in the other hand, the "\,inter-network" which is the
388 backbone link between clusters. By design, these two networks perform
389 with different speed. The intra-network generally works like a high
390 speed local network with a high bandwith and very low latency. In
391 opposite, the inter-network connects clusters sometime via heterogeneous
392 networks components thru internet with a lower speed. The network
393 between distant clusters might be a bottleneck for the global
394 performance of the application.
395
396 \subsection{Comparing GMRES and Multisplitting algorithms in
397 synchronous mode}
398
399 In the scope of this paper, our first objective is to demonstrate the
400 Algo-2 (Multisplitting method) shows a better performance in grid
401 architecture compared with Algo-1 (Classical GMRES) both running in
402 \textit{synchronous mode}. Better algorithm performance
403 should means a less number of iterations output and a less execution time
404 before reaching the convergence. For a systematic study, the experiments
405 should figure out that, for various grid parameters values, the
406 simulator will confirm the targeted outcomes, particularly for poor and
407 slow networks, focusing on the impact on the communication performance
408 on the chosen class of algorithm.
409
410 The following paragraphs present the test conditions, the output results
411 and our comments.\\
412
413
414 \textit{3.a Executing the algorithms on various computational grid
415 architecture and scaling up the input matrix size}
416 \\
417
418 % environment
419 \begin{footnotesize}
420 \begin{tabular}{r c }
421  \hline
422  Grid & 2x16, 4x8, 4x16 and 8x8\\ %\hline
423  Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
424  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline
425  - &  N$_{x}$ x N$_{y}$ x N$_{z}$  =170 x 170 x 170    \\ \hline
426  \end{tabular}
427 Table 1 : Clusters x Nodes with N$_{x}$=150 or N$_{x}$=170 \\
428
429 \end{footnotesize}
430
431
432
433 %\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger}
434
435
436 In this section, we compare the algorithms performance running on various grid configuration (2x16, 4x8, 4x16 and 8x8). First, the results in figure 3 show for all grid configuration the non-variation of the number of iterations of classical GMRES for a given input matrix size; it is not
437 the case for the multisplitting method.
438
439 %\begin{wrapfigure}{l}{100mm}
440 \begin{figure} [ht!]
441 \centering
442 \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
443 \caption{Cluster x Nodes N$_{x}$=150 and N$_{x}$=170}
444 %\label{overflow}}
445 \end{figure}
446 %\end{wrapfigure}
447
448 The execution time difference between the two algorithms is important when
449 comparing between different grid architectures, even with the same number of
450 processors (like 2x16 and 4x8 = 32 processors for example). The
451 experiment concludes the low sensitivity of the multisplitting method
452 (compared with the classical GMRES) when scaling up the number of the processors in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs 40\% better (resp. 48\%) less when running from 2x16=32 to 8x8=64 processors.
453
454 \textit{\\3.b Running on two different speed cluster inter-networks\\}
455
456 % environment
457 \begin{footnotesize}
458 \begin{tabular}{r c }
459  \hline
460  Grid & 2x16, 4x8\\ %\hline
461  Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
462  - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
463  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
464  \end{tabular}
465 Table 2 : Clusters x Nodes - Networks N1 x N2 \\
466
467  \end{footnotesize}
468
469
470
471 %\begin{wrapfigure}{l}{100mm}
472 \begin{figure} [ht!]
473 \centering
474 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
475 \caption{Cluster x Nodes N1 x N2}
476 %\label{overflow}}
477 \end{figure}
478 %\end{wrapfigure}
479
480 The experiments compare the behavior of the algorithms running first on
481 a speed inter- cluster network (N1) and also on a less performant network (N2).
482 Figure 4 shows that end users will gain to reduce the execution time
483 for both algorithms in using a grid architecture like 4x16 or 8x8: the
484 performance was increased in a factor of 2. The results depict also that
485 when the network speed drops down (12.5\%), the difference between the execution
486 times can reach more than 25\%.
487
488 \textit{\\3.c Network latency impacts on performance\\}
489
490 % environment
491 \begin{footnotesize}
492 \begin{tabular}{r c }
493  \hline
494  Grid & 2x16\\ %\hline
495  Network & N1 : bw=1Gbs \\ %\hline
496  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline\\
497  \end{tabular}
498 Table 3 : Network latency impact \\
499
500 \end{footnotesize}
501
502
503
504 \begin{figure} [ht!]
505 \centering
506 \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
507 \caption{Network latency impact on execution time}
508 %\label{overflow}}
509 \end{figure}
510
511
512 According the results in figure 5, degradation of the network
513 latency from 8.10$^{-6}$ to 6.10$^{-5}$ implies an absolute time
514 increase more than 75\% (resp. 82\%) of the execution for the classical
515 GMRES (resp. multisplitting) algorithm. In addition, it appears that the
516 multisplitting method tolerates more the network latency variation with
517 a less rate increase of the execution time. Consequently, in the worst case (lat=6.10$^{-5
518 }$), the execution time for GMRES is almost the double of the time for
519 the multisplitting, even though, the performance was on the same order
520 of magnitude with a latency of 8.10$^{-6}$.
521
522 \textit{\\3.d Network bandwidth impacts on performance\\}
523
524 % environment
525 \begin{footnotesize}
526 \begin{tabular}{r c }
527  \hline
528  Grid & 2x16\\ %\hline
529  Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
530  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
531  \end{tabular}
532 Table 4 : Network bandwidth impact \\
533
534 \end{footnotesize}
535
536
537 \begin{figure} [ht!]
538 \centering
539 \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
540 \caption{Network bandwith impact on execution time}
541 %\label{overflow}
542 \end{figure}
543
544
545
546 The results of increasing the network bandwidth show the improvement
547 of the performance for both of the two algorithms by reducing the execution time (Figure 6). However, and again in this case, the multisplitting method presents a better performance in the considered bandwidth interval with a gain of 40\% which is only around 24\% for classical GMRES.
548
549 \textit{\\3.e Input matrix size impacts on performance\\}
550
551 % environment
552 \begin{footnotesize}
553 \begin{tabular}{r c }
554  \hline
555  Grid & 4x8\\ %\hline
556  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
557  Input matrix size & N$_{x}$ = From 40 to 200\\ \hline \\
558  \end{tabular}
559 Table 5 : Input matrix size impact\\
560
561 \end{footnotesize}
562
563
564 \begin{figure} [ht!]
565 \centering
566 \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
567 \caption{Pb size impact on execution time}
568 %\label{overflow}}
569 \end{figure}
570
571 In this experimentation, the input matrix size has been set from
572 N$_{x}$ = N$_{y}$ = N$_{z}$ = 40 to 200 side elements that is from 40$^{3}$ = 64.000 to
573 200$^{3}$ = 8.000.000 points. Obviously, as shown in the figure 7,
574 the execution time for the two algorithms convergence increases with the
575 input matrix size. But the interesting results here direct on (i) the
576 drastic increase (300 times) of the number of iterations needed before
577 the convergence for the classical GMRES algorithm when the matrix size
578 go beyond N$_{x}$=150; (ii) the classical GMRES execution time also almost
579 the double from N$_{x}$=140 compared with the convergence time of the
580 multisplitting method. These findings may help a lot end users to setup
581 the best and the optimal targeted environment for the application
582 deployment when focusing on the problem size scale up. Note that the
583 same test has been done with the grid 2x16 getting the same conclusion.
584
585 \textit{\\3.f CPU Power impact on performance\\}
586
587 % environment
588 \begin{footnotesize}
589 \begin{tabular}{r c }
590  \hline
591  Grid & 2x16\\ %\hline
592  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
593  Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
594  \end{tabular}
595 Table 6 : CPU Power impact \\
596
597 \end{footnotesize}
598
599
600 \begin{figure} [ht!]
601 \centering
602 \includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
603 \caption{CPU Power impact on execution time}
604 %\label{overflow}}
605 \end{figure}
606
607 Using the Simgrid simulator flexibility, we have tried to determine the
608 impact on the algorithms performance in varying the CPU power of the
609 clusters nodes from 1 to 19 GFlops. The outputs depicted in the figure 6
610 confirm the performance gain, around 95\% for both of the two methods,
611 after adding more powerful CPU. 
612
613 \subsection{Comparing GMRES in native synchronous mode and
614 Multisplitting algorithms in asynchronous mode}
615
616 The previous paragraphs put in evidence the interests to simulate the
617 behavior of the application before any deployment in a real environment.
618 We have focused the study on analyzing the performance in varying the
619 key factors impacting the results. The study compares
620 the performance of the two proposed algorithms both in \textit{synchronous mode
621 }. In this section, following the same previous methodology, the goal is to
622 demonstrate the efficiency of the multisplitting method in \textit{
623 asynchronous mode} compared with the classical GMRES staying in
624 \textit{synchronous mode}.
625
626 Note that the interest of using the asynchronous mode for data exchange
627 is mainly, in opposite of the synchronous mode, the non-wait aspects of
628 the current computation after a communication operation like sending
629 some data between nodes. Each processor can continue their local
630 calculation without waiting for the end of the communication. Thus, the
631 asynchronous may theoretically reduce the overall execution time and can
632 improve the algorithm performance.
633
634 As stated supra, Simgrid simulator tool has been used to prove the
635 efficiency of the multisplitting in asynchronous mode and to find the
636 best combination of the grid resources (CPU, Network, input matrix size,
637 \ldots ) to get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ / exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
638
639
640 The test conditions are summarized in the table below : \\
641
642 % environment
643 \begin{footnotesize}
644 \begin{tabular}{r c }
645  \hline
646  Grid & 2x50 totaling 100 processors\\ %\hline
647  Processors Power & 1 GFlops to 1.5 GFlops\\
648    Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
649    Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
650  Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline
651  Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
652  \end{tabular}
653 \end{footnotesize}
654
655 Again, comprehensive and extensive tests have been conducted varying the
656 CPU power and the network parameters (bandwidth and latency) in the
657 simulator tool with different problem size. The relative gains greater
658 than 1 between the two algorithms have been captured after each step of
659 the test. Table 7 below has recorded the best grid configurations
660 allowing the multisplitting method execution time more performant 2.5 times than
661 the classical GMRES execution and convergence time. The experimentation has demonstrated the relative multisplitting algorithm tolerance when using a low speed network that we encounter usually with distant clusters thru the internet.
662
663 % use the same column width for the following three tables
664 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
665 \newenvironment{mytable}[1]{% #1: number of columns for data
666   \renewcommand{\arraystretch}{1.3}%
667   \begin{tabular}{|>{\bfseries}r%
668                   |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
669     \end{tabular}}
670
671
672 \begin{table}[!t]
673   \centering
674 %  \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
675 %  \label{"Table 7"}
676 Table 7. Relative gain of the multisplitting algorithm compared with
677 the classical GMRES \\
678
679   \begin{mytable}{11}
680     \hline
681     bandwidth (Mbit/s)
682     & 5     & 5     & 5         & 5         & 5  & 50        & 50        & 50        & 50        & 50 \\
683     \hline
684     latency (ms)
685     & 20      & 20      & 20      & 20      & 20 & 20      & 20      & 20      & 20      & 20 \\
686     \hline
687     power (GFlops)
688     & 1    & 1    & 1    & 1.5       & 1.5  & 1.5         & 1.5         & 1         & 1.5       & 1.5 \\
689     \hline
690     size (N)
691     & 62  & 62   & 62        & 100       & 100 & 110       & 120       & 130       & 140       & 150 \\
692     \hline
693     Precision
694     & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11}\\
695     \hline
696     Relative gain
697     & 2.52     & 2.55     & 2.52     & 2.57     & 2.54 & 2.53     & 2.51     & 2.58     & 2.55     & 2.54 \\
698     \hline
699   \end{mytable}
700 \end{table}
701
702 \section{Conclusion}
703 CONCLUSION
704
705
706 \section*{Acknowledgment}
707
708
709 The authors would like to thank\dots{}
710
711
712 \bibliographystyle{wileyj}
713 \bibliography{biblio}
714
715 \end{document}
716
717 %%% Local Variables:
718 %%% mode: latex
719 %%% TeX-master: t
720 %%% fill-column: 80
721 %%% ispell-local-dictionary: "american"
722 %%% End: