]> AND Private Git Repository - rce2015.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
8e39b0786c0e08fbada6a6cdc128790199773065
[rce2015.git] / paper.tex
1 \documentclass[times]{cpeauth}
2
3 \usepackage{moreverb}
4
5 %\usepackage[dvips,colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red]{hyperref}
6
7 %\newcommand\BibTeX{{\rmfamily B\kern-.05em \textsc{i\kern-.025em b}\kern-.08em
8 %T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
9
10 \def\volumeyear{2015}
11
12 \usepackage{graphicx}
13 \usepackage{wrapfig}
14 \usepackage{grffile}
15
16 \usepackage[T1]{fontenc}
17 \usepackage[utf8]{inputenc}
18 \usepackage{amsfonts,amssymb}
19 \usepackage{amsmath}
20 \usepackage{algorithm}
21 \usepackage{algpseudocode}
22 %\usepackage{amsthm}
23 \usepackage{graphicx}
24 \usepackage[american]{babel}
25 % Extension pour les liens intra-documents (tagged PDF)
26 % et l'affichage correct des URL (commande \url{http://example.com})
27 %\usepackage{hyperref}
28
29 \usepackage{url}
30 \DeclareUrlCommand\email{\urlstyle{same}}
31
32 \usepackage[autolanguage,np]{numprint}
33 \AtBeginDocument{%
34   \renewcommand*\npunitcommand[1]{\text{#1}}
35   \npthousandthpartsep{}}
36
37 \usepackage{xspace}
38 \usepackage[textsize=footnotesize]{todonotes}
39
40 \newcommand{\AG}[2][inline]{%
41   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
42 \newcommand{\RC}[2][inline]{%
43   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
44 \newcommand{\LZK}[2][inline]{%
45   \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
46 \newcommand{\RCE}[2][inline]{%
47   \todo[color=yellow!10,#1]{\sffamily\textbf{RCE:} #2}\xspace}
48
49 \algnewcommand\algorithmicinput{\textbf{Input:}}
50 \algnewcommand\Input{\item[\algorithmicinput]}
51
52 \algnewcommand\algorithmicoutput{\textbf{Output:}}
53 \algnewcommand\Output{\item[\algorithmicoutput]}
54
55 \newcommand{\TOLG}{\mathit{tol_{gmres}}}
56 \newcommand{\MIG}{\mathit{maxit_{gmres}}}
57 \newcommand{\TOLM}{\mathit{tol_{multi}}}
58 \newcommand{\MIM}{\mathit{maxit_{multi}}}
59 \newcommand{\TOLC}{\mathit{tol_{cgls}}}
60 \newcommand{\MIC}{\mathit{maxit_{cgls}}}
61
62 \usepackage{array}
63 \usepackage{color, colortbl}
64 \newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}
65 \newcolumntype{Z}[1]{>{\raggedleft}m{#1}}
66
67 \newcolumntype{g}{>{\columncolor{Gray}}c}
68 \definecolor{Gray}{gray}{0.9}
69
70
71
72 \begin{document} \RCE{Titre a confirmer.} \title{Comparative performance
73 analysis of simulated grid-enabled numerical iterative algorithms}
74 %\itshape{\journalnamelc}\footnotemark[2]}
75
76 \author{    Charles Emile Ramamonjisoa and
77     David Laiymani and
78     Arnaud Giersch and
79     Lilia Ziane Khodja and
80     Raphaël Couturier
81 }
82
83 \address{
84         \centering
85     Femto-ST Institute - DISC Department\\
86     Université de Franche-Comté\\
87     Belfort\\
88     Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr}
89 }
90
91 %% Lilia Ziane Khodja: Department of Aerospace \& Mechanical Engineering\\ Non
92 Linear Computational Mechanics\\ University of Liege\\ Liege, Belgium. Email:
93 l.zianekhodja@ulg.ac.be
94
95 \begin{abstract}   The behavior of multicore applications is always a challenge
96 to predict, especially with a new architecture for which no experiment has been
97 performed. With some applications, it is difficult, if not impossible, to build
98 accurate performance models. That is why another solution is to use a simulation
99 tool which allows us to change many parameters of the architecture (network
100 bandwidth, latency, number of processors) and to simulate the execution of such
101 applications. We have decided to use SimGrid as it enables to benchmark MPI
102 applications.
103
104 In this paper, we focus our attention on two parallel iterative algorithms based
105 on the  Multisplitting algorithm  and we  compare them  to the  GMRES algorithm.
106 These algorithms  are used to  solve libear  systems. Two different  variantsof
107 the Multisplitting are studied: one  using synchronoous  iterations and  another
108 one  with asynchronous iterations. For each algorithm we have  tested different
109 parameters to see their influence.  We strongly  recommend people  interested
110 by investing  into a  new expensive  hardware  architecture  to   benchmark
111 their  applications  using  a simulation tool before.
112
113
114
115
116 \end{abstract}
117
118 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
119 %performance} 
120 \keywords{Multisplitting algorithms, Synchronous and asynchronous
121 iterations, SimGrid, Simulation}
122
123 \maketitle
124
125 \section{Introduction}  The use of multi-core architectures for solving large
126 scientific problems seems to  become imperative  in  a  lot  of  cases.
127 Whatever the scale of these architectures (distributed clusters, computational
128 grids, embedded multi-core,~\ldots) they  are generally  well adapted to execute
129 complex parallel applications operating on a large amount of data.
130 Unfortunately,  users (industrials or scientists),  who need such computational
131 resources, may not have an easy access to such efficient architectures. The cost
132 of using the platform and/or the cost of  testing and deploying an application
133 are often very important. So, in this context it is difficult to optimize a
134 given application for a given  architecture. In this way and in order to reduce
135 the access cost to these computing resources it seems very interesting to use a
136 simulation environment.  The advantages are numerous: development life cycle,
137 code debugging, ability to obtain results quickly,~\ldots at the condition that
138 the simulation results are in education with the real ones.
139
140 In this paper we focus on a class of highly efficient parallel algorithms called
141 \emph{iterative algorithms}. The parallel scheme of iterative methods is quite
142 simple. It generally involves the division of the problem into  several
143 \emph{blocks}  that  will  be  solved  in  parallel  on  multiple processing
144 units.  Each processing unit has to compute an iteration, to send/receive some
145 data dependencies to/from its neighbors and to iterate this process until the
146 convergence of the method. Several well-known methods demonstrate the
147 convergence of these algorithms~\cite{BT89,bahi07}. In this processing mode a
148 task cannot begin a new iteration while it has not received data dependencies
149 from its neighbors. We say that the iteration computation follows a synchronous
150 scheme. In the asynchronous scheme a task can compute a new iteration without
151 having to wait for the data dependencies coming from its neighbors. Both
152 communication and computations are asynchronous inducing that there is no more
153 idle times, due to synchronizations, between two iterations~\cite{bcvc06:ij}.
154 This model presents some advantages and drawbacks that we detail in
155 section~\ref{sec:asynchro} but even if the number of iterations required to
156 converge is generally  greater  than for the synchronous  case, it appears that
157 the asynchronous  iterative scheme  can significantly  reduce  overall execution
158 times by  suppressing idle  times due to  synchronizations~(see~\cite{bahi07}
159 for more details).
160
161 Nevertheless, in both cases (synchronous or asynchronous) it is very time
162 consuming to find optimal configuration and deployment requirements  for a given
163 application on a given multi-core architecture. Finding good resource
164 allocations policies under varying CPU power, network speeds and  loads is very
165 challenging and labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
166 problematic is even more difficult for the asynchronous scheme  where variations
167 of the parameters of the execution platform can lead to very different number of
168 iterations required to converge and so to very different execution times. In
169 this challenging context we think that the use of a simulation tool can greatly
170 leverage the possibility of testing various platform scenarios.
171
172 The main contribution of this paper is to show that the use of a simulation tool
173 (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real  parallel
174 applications (i.e. large linear system solvers) can help developers to better
175 tune their application for a given multi-core architecture. To show the validity
176 of this approach we first compare the simulated execution of the multisplitting
177 algorithm  with  the  GMRES   (Generalized   Minimal  Residual)
178 solver~\cite{saad86} in synchronous mode. The obtained results on different
179 simulated multi-core architectures confirm the real results previously obtained
180 on non simulated architectures.  We also confirm  the efficiency  of the
181 asynchronous  multisplitting algorithm  comparing to the synchronous  GMRES. In
182 this way and with a simple computing architecture (a laptop) SimGrid allows us
183 to run a test campaign  of  a  real parallel iterative  applications on
184 different simulated multi-core architectures.  To our knowledge, there is no
185 related work on the large-scale multi-core simulation of a real synchronous and
186 asynchronous iterative application.
187
188 This paper is organized as follows. Section~\ref{sec:asynchro} presents the
189 iteration model we use and more particularly the asynchronous scheme.  In
190 section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented.
191 Section~\ref{sec:04} details the different solvers that we use.  Finally our
192 experimental results are presented in section~\ref{sec:expe} followed by some
193 concluding remarks and perspectives.
194
195
196 \section{The asynchronous iteration model}
197 \label{sec:asynchro}
198
199 \section{SimGrid}
200  \label{sec:simgrid}
201
202 %%%%%%%%%%%%%%%%%%%%%%%%%
203 %%%%%%%%%%%%%%%%%%%%%%%%%
204
205 \section{Two-stage multisplitting methods}
206 \label{sec:04}
207 \subsection{Synchronous and asynchronous two-stage methods for sparse linear systems}
208 \label{sec:04.01}
209 In this paper we focus on two-stage multisplitting methods in their both versions synchronous and asynchronous~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$
210 \begin{equation}
211 Ax=b,
212 \label{eq:01}
213 \end{equation}
214 where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). The two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows
215 \begin{equation}
216 x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots
217 \label{eq:02}
218 \end{equation}
219 where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system
220 \begin{equation}
221 A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
222 \label{eq:03}
223 \end{equation}
224 where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, is studied by many authors for example~\cite{Bru95,bahi07}.
225
226 \begin{figure}[t]
227 %\begin{algorithm}[t]
228 %\caption{Block Jacobi two-stage multisplitting method}
229 \begin{algorithmic}[1]
230   \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
231   \Output $x_\ell$ (solution vector)\vspace{0.2cm}
232   \State Set the initial guess $x^0$
233   \For {$k=1,2,3,\ldots$ until convergence}
234     \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
235     \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$\label{solve}
236     \State Send $x_\ell^k$ to neighboring clusters\label{send}
237     \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters\label{recv}
238   \EndFor
239 \end{algorithmic}
240 \caption{Block Jacobi two-stage multisplitting method}
241 \label{alg:01}
242 %\end{algorithm}
243 \end{figure}
244
245 In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on asynchronous model which allows the communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged
246 \begin{equation}
247 k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM,
248 \label{eq:04}
249 \end{equation}
250 where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm.
251
252 The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration
253 \begin{equation}
254 S=[x^1,x^2,\ldots,x^s],~s\ll n.
255 \label{eq:05}
256 \end{equation}
257 At each $s$ outer iterations, the algorithm computes a new approximation $\tilde{x}=S\alpha$ which minimizes the residual
258 \begin{equation}
259 \min_{\alpha\in\mathbb{R}^s}{\|b-AS\alpha\|_2}.
260 \label{eq:06}
261 \end{equation}
262 The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
263
264 \begin{figure}[t]
265 %\begin{algorithm}[t]
266 %\caption{Krylov two-stage method using block Jacobi multisplitting}
267 \begin{algorithmic}[1]
268   \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
269   \Output $x_\ell$ (solution vector)\vspace{0.2cm}
270   \State Set the initial guess $x^0$
271   \For {$k=1,2,3,\ldots$ until convergence}
272     \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
273     \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$
274     \State $S_{\ell,k\mod s}=x_\ell^k$
275     \If{$k\mod s = 0$}
276        \State $\alpha = Solve_{cgls}(AS,b,\MIC,\TOLC)$\label{cgls}
277        \State $\tilde{x_\ell}=S_\ell\alpha$
278        \State Send $\tilde{x_\ell}$ to neighboring clusters
279        \Else
280          \State Send $x_\ell^k$ to neighboring clusters
281     \EndIf
282     \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters
283   \EndFor
284 \end{algorithmic}
285 \caption{Krylov two-stage method using block Jacobi multisplitting}
286 \label{alg:02}
287 %\end{algorithm}
288 \end{figure}
289
290 \subsection{Simulation of two-stage methods using SimGrid framework}
291 \label{sec:04.02}
292
293 One of our objectives when simulating the application in SIMGRID is, as in real life, to get accurate results (solutions of the problem) but also ensure the test reproducibility under the same conditions. According our experience, very few modifications are required to adapt a MPI program to run in SIMGRID simulator using SMPI (Simulator MPI).The first modification is to include SMPI libraries and related header files (smpi.h). The second and important modification is to eliminate all global variables in moving them to local subroutine or using a Simgrid selector called "runtime automatic switching" (smpi/privatize\_global\_variables). Indeed, global variables can generate side effects on runtime between the threads running in the same process, generated by the Simgrid to simulate the grid environment.The last modification on the MPI program pointed out for some cases, the review of the sequence of the MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions which might cause an infinite loop.
294
295
296 \paragraph{SIMGRID Simulator parameters}
297
298 \begin{itemize}
299         \item hostfile: Hosts description file.
300         \item plarform: File describing the platform architecture : clusters (CPU power,
301 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
302 latency lat, \dots{}).
303         \item archi   : Grid computational description (Number of clusters, Number of
304 nodes/processors for each cluster).
305 \end{itemize}
306
307
308 In addition, the following arguments are given to the programs at runtime:
309
310 \begin{itemize}
311         \item Maximum number of inner and outer iterations;
312         \item Inner and outer precisions;
313         \item Matrix size (N$_{x}$, N$_{y}$ and N$_{z}$);
314         \item Matrix diagonal value = 6.0;
315         \item Execution Mode: synchronous or asynchronous.
316 \end{itemize}
317
318 At last, note that the two solver algorithms have been executed with the Simgrid selector -cfg=smpi/running\_power which determine the computational power (here 19GFlops) of the simulator host machine.
319
320 %%%%%%%%%%%%%%%%%%%%%%%%%
321 %%%%%%%%%%%%%%%%%%%%%%%%%
322
323 \section{Experimental Results}
324 \label{sec:expe}
325
326
327 \subsection{Setup study and Methodology}
328
329 To conduct our study, we have put in place the following methodology
330 which can be reused for any grid-enabled applications.
331
332 \textbf{Step 1} : Choose with the end users the class of algorithms or
333 the application to be tested. Numerical parallel iterative algorithms
334 have been chosen for the study in this paper. \\
335
336 \textbf{Step 2} : Collect the software materials needed for the
337 experimentation. In our case, we have two variants algorithms for the
338 resolution of three 3D-Poisson problem: (1) using the classical GMRES (Algo-1)(2) and the multisplitting method (Algo-2). In addition, SIMGRID simulator has been chosen to simulate the behaviors of the
339 distributed applications. SIMGRID is running on the Mesocentre datacenter in Franche-Comte University but also in a virtual machine on a laptop. \\
340
341 \textbf{Step 3} : Fix the criteria which will be used for the future
342 results comparison and analysis. In the scope of this study, we retain
343 in one hand the algorithm execution mode (synchronous and asynchronous)
344 and in the other hand the execution time and the number of iterations of
345 the application before obtaining the convergence. \\
346
347 \textbf{Step 4 }: Setup up the different grid testbeds environment
348 which will be simulated in the simulator tool to run the program. The
349 following architecture has been configured in Simgrid : 2x16 - that is a
350 grid containing 2 clusters with 16 hosts (processors/cores) each -, 4x8,
351 4x16, 8x8 and 2x50. The network has been designed to operate with a
352 bandwidth equals to 10Gbits (resp. 1Gbits/s) and a latency of 8E-6
353 microseconds (resp. 5E-5) for the intra-clusters links (resp.
354 inter-clusters backbone links). \\
355
356 \textbf{Step 5}: Conduct an extensive and comprehensive testings
357 within these configurations in varying the key parameters, especially
358 the CPU power capacity, the network parameters and also the size of the
359 input matrix. Note that some parameters should be fixed to be invariant to allow the
360 comparison like some program input arguments. \\
361
362 \textbf{Step 6} : Collect and analyze the output results.
363
364 \subsection{Factors impacting distributed applications performance in
365 a grid environment}
366
367 From our previous experience on running distributed application in a
368 computational grid, many factors are identified to have an impact on the
369 program behavior and performance on this specific environment. Mainly,
370 first of all, the architecture of the grid itself can obviously
371 influence the performance results of the program. The performance gain
372 might be important theoretically when the number of clusters and/or the
373 number of nodes (processors/cores) in each individual cluster increase.
374
375 Another important factor impacting the overall performance of the
376 application is the network configuration. Two main network parameters
377 can modify drastically the program output results : (i) the network
378 bandwidth (bw=bits/s) also known as "the data-carrying capacity"
379 of the network is defined as the maximum of data that can pass
380 from one point to another in a unit of time. (ii) the network latency
381 (lat : microsecond) defined as the delay from the start time to send the
382 data from a source and the final time the destination have finished to
383 receive it. Upon the network characteristics, another impacting factor
384 is the application dependent volume of data exchanged between the nodes
385 in the cluster and between distant clusters. Large volume of data can be
386 transferred in transit between the clusters and nodes during the code
387 execution.
388
389  In a grid environment, it is common to distinguish in one hand, the
390 "\,intra-network" which refers to the links between nodes within a
391 cluster and in the other hand, the "\,inter-network" which is the
392 backbone link between clusters. By design, these two networks perform
393 with different speed. The intra-network generally works like a high
394 speed local network with a high bandwith and very low latency. In
395 opposite, the inter-network connects clusters sometime via heterogeneous
396 networks components thru internet with a lower speed. The network
397 between distant clusters might be a bottleneck for the global
398 performance of the application.
399
400 \subsection{Comparing GMRES and Multisplitting algorithms in
401 synchronous mode}
402
403 In the scope of this paper, our first objective is to demonstrate the
404 Algo-2 (Multisplitting method) shows a better performance in grid
405 architecture compared with Algo-1 (Classical GMRES) both running in
406 \textbf{\textit{synchronous mode}}. Better algorithm performance
407 should means a less number of iterations output and a less execution time
408 before reaching the convergence. For a systematic study, the experiments
409 should figure out that, for various grid parameters values, the
410 simulator will confirm the targeted outcomes, particularly for poor and
411 slow networks, focusing on the impact on the communication performance
412 on the chosen class of algorithm.
413
414 The following paragraphs present the test conditions, the output results
415 and our comments.\\
416
417
418 \textit{3.a Executing the algorithms on various computational grid
419 architecture scaling up the input matrix size}
420 \\
421
422 % environment
423 \begin{footnotesize}
424 \begin{tabular}{r c }
425  \hline
426  Grid & 2x16, 4x8, 4x16 and 8x8\\ %\hline
427  Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
428  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline
429  - &  N$_{x}$ x N$_{y}$ x N$_{z}$  =170 x 170 x 170    \\ \hline
430  \end{tabular}
431 Table 1 : Clusters x Nodes with N$_{x}$=150 or N$_{x}$=170 \\
432
433 \end{footnotesize}
434
435
436
437 %\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger}
438
439
440 The results in figure 3 show the non-variation of the number of
441 iterations of classical GMRES for a given input matrix size; it is not
442 the case for the multisplitting method.
443
444 %\begin{wrapfigure}{l}{100mm}
445 \begin{figure} [ht!]
446 \centering
447 \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
448 \caption{Cluster x Nodes N$_{x}$=150 and N$_{x}$=170}
449 %\label{overflow}}
450 \end{figure}
451 %\end{wrapfigure}
452
453 Unless the 8x8 cluster, the time
454 execution difference between the two algorithms is important when
455 comparing between different grid architectures, even with the same number of
456 processors (like 2x16 and 4x8 = 32 processors for example). The
457 experiment concludes the low sensitivity of the multisplitting method
458 (compared with the classical GMRES) when scaling up to higher input
459 matrix size.
460
461 \textit{\\3.b Running on various computational grid architecture\\}
462
463 % environment
464 \begin{footnotesize}
465 \begin{tabular}{r c }
466  \hline
467  Grid & 2x16, 4x8\\ %\hline
468  Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
469  - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
470  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
471  \end{tabular}
472 Table 2 : Clusters x Nodes - Networks N1 x N2 \\
473
474  \end{footnotesize}
475
476
477
478 %\begin{wrapfigure}{l}{100mm}
479 \begin{figure} [ht!]
480 \centering
481 \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
482 \caption{Cluster x Nodes N1 x N2}
483 %\label{overflow}}
484 \end{figure}
485 %\end{wrapfigure}
486
487 The experiments compare the behavior of the algorithms running first on
488 a speed inter- cluster network (N1) and a less performant network (N2).
489 Figure 4 shows that end users will gain to reduce the execution time
490 for both algorithms in using a grid architecture like 4x16 or 8x8: the
491 performance was increased in a factor of 2. The results depict also that
492 when the network speed drops down, the difference between the execution
493 times can reach more than 25\%.
494
495 \textit{\\3.c Network latency impacts on performance\\}
496
497 % environment
498 \begin{footnotesize}
499 \begin{tabular}{r c }
500  \hline
501  Grid & 2x16\\ %\hline
502  Network & N1 : bw=1Gbs \\ %\hline
503  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline\\
504  \end{tabular}
505 Table 3 : Network latency impact \\
506
507 \end{footnotesize}
508
509
510
511 \begin{figure} [ht!]
512 \centering
513 \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
514 \caption{Network latency impact on execution time}
515 %\label{overflow}}
516 \end{figure}
517
518
519 According the results in figure 5, degradation of the network
520 latency from 8.10$^{-6}$ to 6.10$^{-5}$ implies an absolute time
521 increase more than 75\% (resp. 82\%) of the execution for the classical
522 GMRES (resp. multisplitting) algorithm. In addition, it appears that the
523 multisplitting method tolerates more the network latency variation with
524 a less rate increase of the execution time. Consequently, in the worst case (lat=6.10$^{-5
525 }$), the execution time for GMRES is almost the double of the time for
526 the multisplitting, even though, the performance was on the same order
527 of magnitude with a latency of 8.10$^{-6}$.
528
529 \textit{\\3.d Network bandwidth impacts on performance\\}
530
531 % environment
532 \begin{footnotesize}
533 \begin{tabular}{r c }
534  \hline
535  Grid & 2x16\\ %\hline
536  Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
537  Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
538  \end{tabular}
539 Table 4 : Network bandwidth impact \\
540
541 \end{footnotesize}
542
543
544 \begin{figure} [ht!]
545 \centering
546 \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
547 \caption{Network bandwith impact on execution time}
548 %\label{overflow}
549 \end{figure}
550
551
552
553 The results of increasing the network bandwidth depict the improvement
554 of the performance by reducing the execution time for both of the two
555 algorithms (Figure 6). However, and again in this case, the multisplitting method
556 presents a better performance in the considered bandwidth interval with
557 a gain of 40\% which is only around 24\% for classical GMRES.
558
559 \textit{\\3.e Input matrix size impacts on performance\\}
560
561 % environment
562 \begin{footnotesize}
563 \begin{tabular}{r c }
564  \hline
565  Grid & 4x8\\ %\hline
566  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
567  Input matrix size & N$_{x}$ = From 40 to 200\\ \hline \\
568  \end{tabular}
569 Table 5 : Input matrix size impact\\
570
571 \end{footnotesize}
572
573
574 \begin{figure} [ht!]
575 \centering
576 \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
577 \caption{Pb size impact on execution time}
578 %\label{overflow}}
579 \end{figure}
580
581 In this experimentation, the input matrix size has been set from
582 N$_{x}$ = N$_{y}$ = N$_{z}$ = 40 to 200 side elements that is from 40$^{3}$ = 64.000 to
583 200$^{3}$ = 8.000.000 points. Obviously, as shown in the figure 7,
584 the execution time for the two algorithms convergence increases with the
585 input matrix size. But the interesting results here direct on (i) the
586 drastic increase (300 times) of the number of iterations needed before
587 the convergence for the classical GMRES algorithm when the matrix size
588 go beyond N$_{x}$=150; (ii) the classical GMRES execution time also almost
589 the double from N$_{x}$=140 compared with the convergence time of the
590 multisplitting method. These findings may help a lot end users to setup
591 the best and the optimal targeted environment for the application
592 deployment when focusing on the problem size scale up. Note that the
593 same test has been done with the grid 2x16 getting the same conclusion.
594
595 \textit{\\3.f CPU Power impact on performance\\}
596
597 % environment
598 \begin{footnotesize}
599 \begin{tabular}{r c }
600  \hline
601  Grid & 2x16\\ %\hline
602  Network & N2 : bw=1Gbs - lat=5E-05 \\ %\hline
603  Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
604  \end{tabular}
605 Table 6 : CPU Power impact \\
606
607 \end{footnotesize}
608
609
610 \begin{figure} [ht!]
611 \centering
612 \includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
613 \caption{CPU Power impact on execution time}
614 %\label{overflow}}
615 \end{figure}
616
617 Using the SIMGRID simulator flexibility, we have tried to determine the
618 impact on the algorithms performance in varying the CPU power of the
619 clusters nodes from 1 to 19 GFlops. The outputs depicted in the figure 6
620 confirm the performance gain, around 95\% for both of the two methods,
621 after adding more powerful CPU. Note that the execution time axis in the
622 figure is in logarithmic scale.
623
624 \subsection{Comparing GMRES in native synchronous mode and
625 Multisplitting algorithms in asynchronous mode}
626
627 The previous paragraphs put in evidence the interests to simulate the
628 behavior of the application before any deployment in a real environment.
629 We have focused the study on analyzing the performance in varying the
630 key factors impacting the results. In the same line, the study compares
631 the performance of the two proposed methods in \textbf{synchronous mode
632 }. In this section, with the same previous methodology, the goal is to
633 demonstrate the efficiency of the multisplitting method in \textbf{
634 asynchronous mode} compare with the classical GMRES staying in the
635 synchronous mode.
636
637 Note that the interest of using the asynchronous mode for data exchange
638 is mainly, in opposite of the synchronous mode, the non-wait aspects of
639 the current computation after a communication operation like sending
640 some data between nodes. Each processor can continue their local
641 calculation without waiting for the end of the communication. Thus, the
642 asynchronous may theoretically reduce the overall execution time and can
643 improve the algorithm performance.
644
645 As stated supra, SIMGRID simulator tool has been used to prove the
646 efficiency of the multisplitting in asynchronous mode and to find the
647 best combination of the grid resources (CPU, Network, input matrix size,
648 \ldots ) to get the highest "\,relative gain" in comparison with the
649 classical GMRES time.
650
651
652 The test conditions are summarized in the table below : \\
653
654 % environment
655 \begin{footnotesize}
656 \begin{tabular}{r c }
657  \hline
658  Grid & 2x50 totaling 100 processors\\ %\hline
659  Processors & 1 GFlops to 1.5 GFlops\\
660    Intra-Network & bw=1.25 Gbits - lat=5E-05 \\ %\hline
661    Inter-Network & bw=5 Mbits - lat=2E-02\\
662  Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline
663  Residual error precision: 10$^{-5}$ to 10$^{-9}$\\ \hline \\
664  \end{tabular}
665 \end{footnotesize}
666
667 Again, comprehensive and extensive tests have been conducted varying the
668 CPU power and the network parameters (bandwidth and latency) in the
669 simulator tool with different problem size. The relative gains greater
670 than 1 between the two algorithms have been captured after each step of
671 the test. Table I below has recorded the best grid configurations
672 allowing a multiplitting method time more than 2.5 times lower than
673 classical GMRES execution and convergence time. The finding thru this
674 experimentation is the tolerance of the multisplitting method under a
675 low speed network that we encounter usually with distant clusters thru the
676 internet.
677
678 % use the same column width for the following three tables
679 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
680 \newenvironment{mytable}[1]{% #1: number of columns for data
681   \renewcommand{\arraystretch}{1.3}%
682   \begin{tabular}{|>{\bfseries}r%
683                   |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
684     \end{tabular}}
685
686 \begin{table}[!t]
687   \centering
688   \caption{Relative gain of the multisplitting algorithm compared with
689 the classical GMRES}
690   \label{"Table 7"}
691
692   \begin{mytable}{6}
693     \hline
694     bandwidth (Mbit/s)
695     & 5         & 5         & 5         & 5         & 5 \\
696     \hline
697     latency (ms)
698     & 20      & 20      & 20      & 20      & 20 \\
699     \hline
700     power (GFlops)
701     & 1         & 1         & 1         & 1.5       & 1.5 \\
702     \hline
703     size (N)
704     & 62        & 62        & 62        & 100       & 100 \\
705     \hline
706     Precision
707     & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
708     \hline
709     Relative gain
710     & 2.52     & 2.55     & 2.52     & 2.57     & 2.54 \\
711     \hline
712   \end{mytable}
713
714   \smallskip
715
716   \begin{mytable}{6}
717     \hline
718     bandwidth (Mbit/s)
719     & 50        & 50        & 50        & 50        & 50 \\
720     \hline
721     latency (ms)
722     & 20      & 20      & 20      & 20      & 20 \\
723     \hline
724     power (GFlops)
725     & 1.5         & 1.5         & 1         & 1.5       & 1.5 \\
726     \hline
727     size (N)
728     & 110       & 120       & 130       & 140       & 150 \\
729     \hline
730     Precision
731     & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11}\\
732     \hline
733     Relative gain
734     & 2.53     & 2.51     & 2.58     & 2.55     & 2.54 \\
735     \hline
736   \end{mytable}
737 \end{table}
738
739 \section{Conclusion}
740 CONCLUSION
741
742
743 \section*{Acknowledgment}
744
745
746 The authors would like to thank\dots{}
747
748
749 \bibliographystyle{wileyj}
750 \bibliography{biblio}
751
752 \end{document}
753
754 %%% Local Variables:
755 %%% mode: latex
756 %%% TeX-master: t
757 %%% fill-column: 80
758 %%% ispell-local-dictionary: "american"
759 %%% End: