\end{center}
\end{table}
-
-
-
\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
\ \\
% environment
+In this section, we analyze the simulations conducted on various grid configurations and for different sizes of the 3D Poisson problem. The parameters of the network between clusters is fixed to $N1$ (see Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a given matrix size 170$^3$ elements, a non-variation in the number of iterations for the classical GMRES algorithm, which is not the case of the Krylov two-stage algorithm.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-Table~\ref{tab:01} summarizes the different parameters used in the simulations: the grid architectures, the network of inter-cluster backbone links and the matrix sizes of the 3D Poisson problem.
-In this section, we analyze the simulations conducted on various grid
-configurations presented in Table~\ref{tab:01}. It should be noticed that two
-networks are considered: N1 is the network between clusters (inter-cluster) and
-N2 is the network inside a cluster (intra-cluster). Figure~\ref{fig:01} shows,
-for all grid configurations and a given matrix size, a non-variation in the
-number of iterations for the classical GMRES algorithm, which is not the case of
-the Krylov two-stage algorithm.
-%% First, the results in Figure~\ref{fig:01}
-%% show for all grid configurations the non-variation of the number of iterations of
-%% classical GMRES for a given input matrix size; it is not the case for the
-%% multisplitting method.
-%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-%\RC{Les légendes ne sont pas explicites...}
-%\RCE{Corrige}
\begin{figure} [htbp]
\begin{center}
\hline
Grid Architecture & 4 $\times$ 8\\ %\hline
Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 40$^{3}$ to 200$^{3}$\\ \hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
\end{tabular}
\caption{Test conditions: Input matrix size impacts}
\label{tab:05}
\label{fig:05}
\end{figure}
-In these experiments, the input matrix size has been set from $N_{x} = N_{y}
-= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
-= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
-time for both algorithms increases when the input matrix size also increases.
-But the interesting results are:
-\begin{enumerate}
- \item the important increase ($10$ times) of the number of iterations needed to
- reach the convergence for the classical GMRES algorithm particularly, when the matrix size
- go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
- \RCE{Le nombre d'iterations augmente de 10 fois, cela surtout a partir de N=150}
-
-\item the classical GMRES execution time is almost the double for $N_{x}=140$
- compared with the Krylov multisplitting method.
-\end{enumerate}
+In these experiments, the input matrix size has been set from $50^3$ to
+$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
+algorithms increases when the input matrix size also increases. For all problem
+sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
+benchmark, it seems that the greater the problem size is, the bigger the ratio
+between both algorithm execution times is. We can also observ that for some
+problem sizes, the Krylov multisplitting convergence varies quite a
+lot. Consequently the execution times in that cases also varies.
+
These findings may help a lot end users to setup the best and the optimal
targeted environment for the application deployment when focusing on the problem