\end{center}
\end{table}
-
-
-
\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
\ \\
% environment
+In this section, we analyze the simulations conducted on various grid configurations and for different sizes of the 3D Poisson problem. The parameters of the network between clusters is fixed to $N1$ (see Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a given matrix size 170$^3$ elements, a non-variation in the number of iterations for the classical GMRES algorithm, which is not the case of the Krylov two-stage algorithm.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-Table~\ref{tab:01} summarizes the different parameters used in the simulations: the grid architectures, the network of inter-cluster backbone links and the matrix sizes of the 3D Poisson problem.
-In this section, we analyze the simulations conducted on various grid
-configurations presented in Table~\ref{tab:01}. It should be noticed that two
-networks are considered: N1 is the network between clusters (inter-cluster) and
-N2 is the network inside a cluster (intra-cluster). Figure~\ref{fig:01} shows,
-for all grid configurations and a given matrix size, a non-variation in the
-number of iterations for the classical GMRES algorithm, which is not the case of
-the Krylov two-stage algorithm.
-%% First, the results in Figure~\ref{fig:01}
-%% show for all grid configurations the non-variation of the number of iterations of
-%% classical GMRES for a given input matrix size; it is not the case for the
-%% multisplitting method.
-%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-%\RC{Les légendes ne sont pas explicites...}
-%\RCE{Corrige}
\begin{figure} [htbp]
\begin{center}