]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif
[rce2015.git] / paper.tex
index 825938520bb2af71001375e2cef7145ad9e768f3..24ab679bc24daa36f551759d838f7ee6726dd8aa 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -549,14 +549,34 @@ Grid architecture                       & 2$\times$16, 4$\times$8, 4$\times$16 a
 \end{center}
 \end{table}
 
 \end{center}
 \end{table}
 
-
-
-
 \subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
 \  \\
 % environment
 \subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
 \  \\
 % environment
+In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
+configurations and for different sizes of the 3D Poisson problem. The parameters
+of    the    network    between    clusters    is    fixed    to    $N1$    (see
+Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a
+given matrix size 170$^3$ elements, a  non-variation in the number of iterations
+for the classical GMRES algorithm, which is not the case of the Krylov two-stage
+algorithm. In fact, with multisplitting  algorithms, the number of splitting (in
+our case, it is the number of clusters) influences on the convergence speed. The
+higher the number  of splitting is, the slower the  convergence of the algorithm
+is.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
 
 
-Table~\ref{tab:01} summarizes the different parameters used in the simulations: the grid architectures, the network of inter-cluster backbone links and the matrix sizes of the 3D Poisson problem.
 
 
 
 
 
 
@@ -568,20 +588,6 @@ Table~\ref{tab:01} summarizes the different parameters used in the simulations:
 
 
 
 
 
 
-In  this  section,  we  analyze   the  simulations  conducted  on  various  grid
-configurations presented  in Table~\ref{tab:01}. It  should be noticed  that two
-networks are considered: N1 is  the network between clusters (inter-cluster) and
-N2 is the network inside  a cluster (intra-cluster).  Figure~\ref{fig:01} shows,
-for all  grid configurations  and a  given matrix size,  a non-variation  in the
-number of iterations for the classical GMRES algorithm, which is not the case of
-the Krylov two-stage algorithm.
-%% First,  the results in  Figure~\ref{fig:01}
-%% show for all grid configurations the non-variation of the number of iterations of
-%% classical  GMRES for  a given  input matrix  size; it is not  the case  for the
-%% multisplitting method.
-%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...}
-%\RC{Les légendes ne sont pas explicites...}
-%\RCE{Corrige}
 
 \begin{figure} [htbp]
   \begin{center}
 
 \begin{figure} [htbp]
   \begin{center}
@@ -597,15 +603,15 @@ the Krylov two-stage algorithm.
 
 
 
 
 
 
-The execution  times between  the two algorithms  is significant  with different
+The execution  times between  both algorithms  is significant  with different
 grid architectures, even  with the same number of processors  (for example, 2 $\times$ 16
 and  4 $\times  8$). We  can  observe  a better  sensitivity  of  the Krylov multisplitting  method
 (compared with the classical GMRES) when scaling up the number of the processors
 in the  grid: in  average, the GMRES  (resp. Multisplitting)  algorithm performs
 $40\%$ better (resp. $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors/cores (grid 8 $\times$ 8). Note that even with a grid 8 $\times$ 8 having the maximum number of clusters, the execution time of the multisplitting method is in average 32\% less compared to GMRES. 
 grid architectures, even  with the same number of processors  (for example, 2 $\times$ 16
 and  4 $\times  8$). We  can  observe  a better  sensitivity  of  the Krylov multisplitting  method
 (compared with the classical GMRES) when scaling up the number of the processors
 in the  grid: in  average, the GMRES  (resp. Multisplitting)  algorithm performs
 $40\%$ better (resp. $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors/cores (grid 8 $\times$ 8). Note that even with a grid 8 $\times$ 8 having the maximum number of clusters, the execution time of the multisplitting method is in average 32\% less compared to GMRES. 
-\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
-\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?}
-\RCE{Remarquez que meme avec une grille 8x8, le multi est toujours plus performant}
+%\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?}
+%\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?}
+%\RCE{Remarquez que meme avec une grille 8x8, le multi est toujours plus performant}
 
 \subsubsection{Simulations for two different inter-clusters network speeds \\}
 
 
 \subsubsection{Simulations for two different inter-clusters network speeds \\}
 
@@ -717,7 +723,7 @@ of $40\%$ which is only around $24\%$ for the classical GMRES.
  \hline
  Grid Architecture & 4 $\times$ 8\\ %\hline
  Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
  \hline
  Grid Architecture & 4 $\times$ 8\\ %\hline
  Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 40$^{3}$ to 200$^{3}$\\ \hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
@@ -731,25 +737,20 @@ of $40\%$ which is only around $24\%$ for the classical GMRES.
 \label{fig:05}
 \end{figure}
 
 \label{fig:05}
 \end{figure}
 
-In these experiments, the input matrix size  has been set from $N_{x} = N_{y}
-= N_{z} = 40$ to $200$ side elements  that is from $40^{3} = 64.000$ to $200^{3}
-= 8,000,000$  points. Obviously, as  shown in Figure~\ref{fig:05},  the execution
-time for  both algorithms increases when  the input matrix size  also increases.
-But the interesting results are:
-\begin{enumerate}
-  \item the important increase ($10$ times)  of the number of iterations needed to
-    reach the convergence for the classical GMRES algorithm particularly, when the matrix size
-    go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
-    \RCE{Le nombre d'iterations augmente de 10 fois, cela surtout a partir de N=150}
-    
-\item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
-  compared with the Krylov multisplitting method.
-\end{enumerate}
+In  these  experiments, the  input  matrix  size has  been  set  from $50^3$  to
+$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
+algorithms increases when the input matrix size also increases.  For all problem
+sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
+benchmark, it seems that  the greater the problem size is,  the bigger the ratio
+between both  algorithm execution  times is.  We can also  observ that  for some
+problem   sizes,  the   Krylov   multisplitting  convergence   varies  quite   a
+lot. Consequently the execution times in that cases also varies.
+
 
 These  findings may  help a  lot end  users to  setup the  best and  the optimal
 targeted environment for the application deployment when focusing on the problem
 size scale up.  It  should be noticed that the same test has  been done with the
 
 These  findings may  help a  lot end  users to  setup the  best and  the optimal
 targeted environment for the application deployment when focusing on the problem
 size scale up.  It  should be noticed that the same test has  been done with the
-grid 2 $\times$ 16 leading to the same conclusion.
+grid 4 $\times$ 8 leading to the same conclusion.
 
 \subsubsection{CPU Power impacts on performance}
 
 
 \subsubsection{CPU Power impacts on performance}