\end{equation}
where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
-\begin{figure}[t]
+\begin{figure}[htpb]
%\begin{algorithm}[t]
%\caption{Block Jacobi two-stage multisplitting method}
\begin{algorithmic}[1]
\end{equation}
The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
-\begin{figure}[t]
+\begin{figure}[htbp]
%\begin{algorithm}[t]
%\caption{Krylov two-stage method using block Jacobi multisplitting}
\begin{algorithmic}[1]
%\RC{Les légendes ne sont pas explicites...}
%\RCE{Corrige}
-\begin{figure} [ht!]
+\begin{figure} [htbp]
\begin{center}
\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
\end{center}
%\begin{wrapfigure}{l}{100mm}
-\begin{figure} [ht!]
+\begin{figure} [htbp]
\centering
\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
\caption{Various grid configurations with networks N1 vs N2
\label{tab:03}
\end{table}
-\begin{figure} [ht!]
+\begin{figure} [htbp]
\centering
\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
\caption{Network latency impacts on execution time
\end{table}
-\begin{figure} [ht!]
+\begin{figure} [htbp]
\centering
\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impacts on execution time
-\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
-\RCE{Corrige}
+\caption{Network bandwith impacts on execution time}
+%\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
+%\RCE{Corrige}
\label{fig:04}
\end{figure}
\end{table}
-\begin{figure} [ht!]
+\begin{figure} [htbp]
\centering
\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
\caption{Problem size impacts on execution time}
\subsubsection{CPU Power impacts on performance}
-\begin{table} [ht!]
+\begin{table} [htbp]
\centering
\begin{tabular}{r c }
\hline
theoretically reduce the overall execution time and can improve the algorithm
performance.
-\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici}
-\RCE{C est la description du dernier test sync/async avec l'introduction de la notion de relative gain}
-In this section, Simgrid simulator tool has been successfully used to show
-the efficiency of the multisplitting in asynchronous mode and to find the best
-combination of the grid resources (CPU, Network, input matrix size, \ldots ) to
-get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ /
-exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
+In this section, the Simgrid simulator is used to compare the behavior of the
+multisplitting in asynchronous mode with GMRES in synchronous mode. Several
+benchmarks have been performed with various combination of the grid resources
+(CPU, Network, input matrix size, \ldots ). The test conditions are summarized
+in Table~\ref{tab:07}. In order to compare the execution times, this table
+reports the relative gain between both algorithms. It is defined by the ratio
+between the execution time of GMRES and the execution time of the
+multisplitting. The ration is greater than one because the asynchronous
+multisplitting version is faster than GMRES.
-The test conditions are summarized in the table~\ref{tab:07}: \\
-\begin{table} [ht!]
+\begin{table} [htbp]
\centering
\begin{tabular}{r c }
\hline
power (GFlops)
& 1 & 1 & 1 & 1.5 & 1.5 & 1.5 & 1.5 & 1 & 1.5 & 1.5 \\
\hline
- size (N)
+ size ($N^3$)
& 62 & 62 & 62 & 100 & 100 & 110 & 120 & 130 & 140 & 150 \\
\hline
Precision