-In this section, we analyze the simulations conducted on various grid configurations and for different sizes of the 3D Poisson problem. The parameters of the network between clusters is fixed to $N1$ (see Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a given matrix size 170$^3$ elements, a non-variation in the number of iterations for the classical GMRES algorithm, which is not the case of the Krylov two-stage algorithm.
+In this section, we analyze the simulations conducted on various grid
+configurations and for different sizes of the 3D Poisson problem. The parameters
+of the network between clusters is fixed to $N1$ (see
+Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a
+given matrix size 170$^3$ elements, a non-variation in the number of iterations
+for the classical GMRES algorithm, which is not the case of the Krylov two-stage
+algorithm. In fact, with multisplitting algorithms, the number of splitting (in
+our case, it is the number of clusters) influences on the convergence speed. The
+higher the number of splitting is, the slower the convergence of the algorithm
+is.