]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
RCE : Quelques corrections
authorRCE <cramamonjisoa@bilbo.iut-bm.univ-fcomte.fr>
Tue, 5 May 2015 23:26:45 +0000 (01:26 +0200)
committerRCE <cramamonjisoa@bilbo.iut-bm.univ-fcomte.fr>
Tue, 5 May 2015 23:26:45 +0000 (01:26 +0200)
paper.tex

index 95683d5284e523a99084d8e42b321046e4ff197b..397decc12af88aba0e11d0f4c954cde9f731e27d 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -317,7 +317,7 @@ suppress all global variables by replacing  them with local variables or using a
 Simgrid      selector       called      "runtime       automatic      switching"
 (smpi/privatize\_global\_variables). Indeed, global  variables can generate side
 effects on runtime between the threads running in the same process, generated by
 Simgrid      selector       called      "runtime       automatic      switching"
 (smpi/privatize\_global\_variables). Indeed, global  variables can generate side
 effects on runtime between the threads running in the same process, generated by
-the Simgrid  to simulate the  grid environment.  \RC{On vire cette  phrase ?}The
+Simgrid  to simulate the  grid environment.  \RC{On vire cette  phrase ?} \RCE {Si c'est la phrase d'avant sur les threads, je pense qu'on peut la retenir car c'est l'explication du pourquoi Simgrid n'aime pas les variables globales. Si c'est pas bien dit, on peut la reformuler. Si c'est la phrase ci-apres, effectivement, on peut la virer si elle preterais a discussion}The
 last modification on the  MPI program pointed out for some  cases, the review of
 the sequence of  the MPI\_Isend, MPI\_Irecv and  MPI\_Waitall instructions which
 might cause an infinite loop.
 last modification on the  MPI program pointed out for some  cases, the review of
 the sequence of  the MPI\_Isend, MPI\_Irecv and  MPI\_Waitall instructions which
 might cause an infinite loop.
@@ -343,9 +343,16 @@ In addition, the following arguments are given to the programs at runtime:
 \begin{itemize}
        \item maximum number of inner and outer iterations;
        \item inner and outer precisions;
 \begin{itemize}
        \item maximum number of inner and outer iterations;
        \item inner and outer precisions;
-       \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$);
-       \item matrix diagonal value = 6.0 (for synchronous Krylov multisplitting experiments and 6.2 for asynchronous block Jacobi experiments); \RC{CE tu vérifies, je dis ca de tête}
-       \item execution mode: synchronous or asynchronous.
+       \item maximum number of the gmres's restarts in the Arnorldi process;
+       \item maximum number of iterations qnd the tolerance threshold in classical GMRES;
+       \item tolerance threshold for outer and inner-iterations;
+       \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$) respectively on x, y, z axis;
+       \item matrix diagonal value = 6.0 for synchronous Krylov multisplitting experiments and 6.2 for asynchronous block Jacobi experiments; \RC{CE tu vérifies, je dis ca de tête}
+       \item matrix off-diagonal value;
+       \item execution mode: synchronous or asynchronous;
+       \RCE {C'est ok la liste des arguments du programme mais si Lilia ou toi pouvez preciser pour les  arguments pour CGLS ci dessous}
+       \item Size of matrix S;
+       \item Maximum number of iterations and tolerance threshold for CGLS. 
 \end{itemize}
 
 It should also be noticed that both solvers have been executed with the Simgrid selector -cfg=smpi/running\_power which determines the computational power (here 19GFlops) of the simulator host machine.
 \end{itemize}
 
 It should also be noticed that both solvers have been executed with the Simgrid selector -cfg=smpi/running\_power which determines the computational power (here 19GFlops) of the simulator host machine.
@@ -356,7 +363,7 @@ It should also be noticed that both solvers have been executed with the Simgrid
 \section{Experimental Results}
 \label{sec:expe}
 
 \section{Experimental Results}
 \label{sec:expe}
 
-In this section, experiments for both Multisplitting algorithms are reported. First the problem sued in our experiments is described.
+In this section, experiments for both Multisplitting algorithms are reported. First the problem used in our experiments is described.
 
 We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form
 \begin{equation}
 
 We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form
 \begin{equation}
@@ -393,7 +400,7 @@ have been chosen for the study in this paper. \\
 \textbf{Step 2}: Collect the software materials needed for the
 experimentation. In our case, we have two variants algorithms for the
 resolution of the 3D-Poisson problem: (1) using the classical GMRES; (2) and the Multisplitting method. In addition, the Simgrid simulator has been chosen to simulate the behaviors of the
 \textbf{Step 2}: Collect the software materials needed for the
 experimentation. In our case, we have two variants algorithms for the
 resolution of the 3D-Poisson problem: (1) using the classical GMRES; (2) and the Multisplitting method. In addition, the Simgrid simulator has been chosen to simulate the behaviors of the
-distributed applications. Simgrid is running on the Mesocentre datacenter in the University of  Franche-Comte and also in a virtual machine on a laptop. \\
+distributed applications. Simgrid is running on the Mesocentre datacenter in the University of  Franche-Comte and also in a virtual machine on a simple laptop. \\
 
 \textbf{Step 3}: Fix the criteria which will be used for the future
 results comparison and analysis. In the scope of this study, we retain
 
 \textbf{Step 3}: Fix the criteria which will be used for the future
 results comparison and analysis. In the scope of this study, we retain
@@ -445,7 +452,7 @@ transit between the clusters and nodes during the code execution.
  In  a grid  environment, it  is common  to distinguish,  on the  one hand,  the
  "intra-network" which refers  to the links between nodes within  a cluster and,
  on  the other  hand, the  "inter-network" which  is the  backbone link  between
  In  a grid  environment, it  is common  to distinguish,  on the  one hand,  the
  "intra-network" which refers  to the links between nodes within  a cluster and,
  on  the other  hand, the  "inter-network" which  is the  backbone link  between
- clusters.  In   practse;  these  two   networks  have  different   speeds.  The
+ clusters.  In   practice,  these  two   networks  have  different   speeds.  The
  intra-network  generally works  like a  high speed  local network  with a  high
  bandwith and very low latency. In opposite, the inter-network connects clusters
  sometime via  heterogeneous networks components  throuth internet with  a lower
  intra-network  generally works  like a  high speed  local network  with a  high
  bandwith and very low latency. In opposite, the inter-network connects clusters
  sometime via  heterogeneous networks components  throuth internet with  a lower