]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015
authorDavid Laiymani <david.laiymani@univ-fcomte.fr>
Thu, 7 May 2015 14:00:01 +0000 (16:00 +0200)
committerDavid Laiymani <david.laiymani@univ-fcomte.fr>
Thu, 7 May 2015 14:00:01 +0000 (16:00 +0200)
1  2 
paper.tex

diff --combined paper.tex
index 9a7ae98927725f1c1ab51cd2ce8d159f33fb88e0,9e09b3182756a28f298e8c45319d8215b71fac1e..a21da9ab5eb292cc582c0fb627abecb36514724e
+++ b/paper.tex
@@@ -21,7 -21,6 +21,6 @@@
  \usepackage{algpseudocode}
  %\usepackage{amsthm}
  \usepackage{graphicx}
- \usepackage[american]{babel}
  % Extension pour les liens intra-documents (tagged PDF)
  % et l'affichage correct des URL (commande \url{http://example.com})
  %\usepackage{hyperref}
  analysis of simulated grid-enabled numerical iterative algorithms}
  %\itshape{\journalnamelc}\footnotemark[2]}
  
- \author{    Charles Emile Ramamonjisoa and
-     David Laiymani and
-     Arnaud Giersch and
-     Lilia Ziane Khodja and
-     Raphaël Couturier
+ \author{Charles Emile Ramamonjisoa\affil{1},
+     David Laiymani\affil{1},
+     Arnaud Giersch\affil{1},
+     Lilia Ziane Khodja\affil{2} and
+     Raphaël Couturier\affil{1}
  }
  
  \address{
-       \centering
-     Femto-ST Institute - DISC Department\\
-     Université de Franche-Comté\\
-     Belfort\\
-     Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr}
+   \affilnum{1}%
+   Femto-ST Institute, DISC Department,
+   University of Franche-Comté,
+   Belfort, France.
+   Email:~\email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}\break
+   \affilnum{2}
+   Department of Aerospace \& Mechanical Engineering,
+   Non Linear Computational Mechanics,
+   University of Liege, Liege, Belgium.
+   Email:~\email{l.zianekhodja@ulg.ac.be}
  }
  
- %% Lilia Ziane Khodja: Department of Aerospace \& Mechanical Engineering\\ Non Linear Computational Mechanics\\ University of Liege\\ Liege, Belgium. Email: l.zianekhodja@ulg.ac.be
  \begin{abstract}   The behavior of multi-core applications is always a challenge
  to predict, especially with a new architecture for which no experiment has been
  performed. With some applications, it is difficult, if not impossible, to build
@@@ -134,7 -136,7 +136,7 @@@ are often very important. So, in this c
  given application for a given  architecture. In this way and in order to reduce
  the access cost to these computing resources it seems very interesting to use a
  simulation environment.  The advantages are numerous: development life cycle,
- code debugging, ability to obtain results quickly~\ldots. In counterpart, the simulation results need to be consistent with the real ones.
+ code debugging, ability to obtain results quickly\dots{} In counterpart, the simulation results need to be consistent with the real ones.
  
  In this paper we focus on a class of highly efficient parallel algorithms called
  \emph{iterative algorithms}. The parallel scheme of iterative methods is quite
@@@ -163,11 -165,10 +165,11 @@@ application  on   a  given   multi-cor
  allocations policies under  varying CPU power, network speeds and  loads is very
  challenging and  labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
  problematic is  even more difficult  for the  asynchronous scheme where  a small
 -parameter variation of the execution platform can lead to very different numbers
 -of iterations to reach the converge and so to very different execution times. In
 -this challenging context we think that the  use of a simulation tool can greatly
 -leverage the possibility of testing various platform scenarios.
 +parameter variation of the execution platform and of the application data can
 +lead to very different numbers of iterations to reach the converge and so to
 +very different execution times. In this challenging context we think that the
 +use of a simulation tool can greatly leverage the possibility of testing various
 +platform scenarios.
  
  The main contribution of this paper is to show that the use of a simulation tool
  (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real  parallel
@@@ -175,23 -176,18 +177,23 @@@ applications (i.e. large linear system 
  tune their application for a given multi-core architecture. To show the validity
  of this approach we first compare the simulated execution of the multisplitting
  algorithm  with  the  GMRES   (Generalized   Minimal  Residual)
 -solver~\cite{saad86} in synchronous mode. 
 +solver~\cite{saad86} in synchronous mode. The simulation results allow us to
 +determine which method to choose given a specified multi-core architecture.
  
  \LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...}
 +\DL{OK : ajout d'une phrase précisant tout cela}
  
 -The obtained results on different
 -simulated multi-core architectures confirm the real results previously obtained
 -on non simulated architectures.  
 +Moreover the obtained results on different simulated multi-core architectures
 +confirm the real results previously obtained on non simulated architectures.
 +More precisely the simulated results are in accordance (i.e. with the same order
 +of magnitude) with the works presented in [], which show that the multisplitting
 +method is more efficient than GMRES for large scale clusters.
  
  \LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.}
 +\DL{OK ajout d'une phrase. Par contre je n'ai pas la ref. Merci de la mettre}
  
  We also confirm  the efficiency  of the
 -asynchronous  multisplitting algorithm  compared to the synchronous  GMRES. 
 +asynchronous  multisplitting algorithm compared to the synchronous  GMRES.
  
  \LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)}
  
@@@ -241,7 -237,7 +243,7 @@@ for the asynchronous scheme (this numbe
  messages). Note that, it is not the case in the synchronous mode where the
  number of iterations is the same than in the sequential mode. In this way, the
  set of the parameters  of the  platform (number  of nodes,  power of nodes,
- inter and  intra clusters  bandwidth  and  latency \ldots) and  of  the
+ inter and  intra clusters  bandwidth  and  latency, \ldots) and  of  the
  application can drastically change the number of iterations required to get the
  convergence. It follows that asynchronous iterative algorithms are difficult to
  optimize since the financial and deployment costs on large scale multi-core
@@@ -256,6 -252,57 +258,57 @@@ magnitude. To our knowledge, there is n
  SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
  
  %%%%%%%%%%%%%%%%%%%%%%%%%
+ % SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}
+ % is a simulation framework to study the behavior of large-scale distributed
+ % systems.  As its name suggests, it emanates from the grid computing community,
+ % but is nowadays used to study grids, clouds, HPC or peer-to-peer systems.  The
+ % early versions of SimGrid date back from 1999, but it is still actively
+ % developed and distributed as an open source software.  Today, it is one of the
+ % major generic tools in the field of simulation for large-scale distributed
+ % systems.
+ SimGrid provides several programming interfaces: MSG to simulate Concurrent
+ Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
+ run real applications written in MPI~\cite{MPI}.  Apart from the native C
+ interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
+ languages.  SMPI is the interface that has been used for the work described in
+ this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
+ standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports
+ applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B).
+ Within SimGrid, the execution of a distributed application is simulated by a
+ single process.  The application code is really executed, but some operations,
+ like communications, are intercepted, and their running time is computed
+ according to the characteristics of the simulated execution platform.  The
+ description of this target platform is given as an input for the execution, by
+ means of an XML file.  It describes the properties of the platform, such as
+ the computing nodes with their computing power, the interconnection links with
+ their bandwidth and latency, and the routing strategy.  The scheduling of the
+ simulated processes, as well as the simulated running time of the application
+ are computed according to these properties.
+ To compute the durations of the operations in the simulated world, and to take
+ into account resource sharing (e.g. bandwidth sharing between competing
+ communications), SimGrid uses a fluid model.  This allows users to run relatively fast
+ simulations, while still keeping accurate
+ results~\cite{bedaride+degomme+genaud+al.2013.toward,
+   velho+schnorr+casanova+al.2013.validity}.  Moreover, depending on the
+ simulated application, SimGrid/SMPI allows to skip long lasting computations and
+ to only take their duration into account.  When the real computations cannot be
+ skipped, but the results are unimportant for the simulation results, it is
+ also possible to share dynamically allocated data structures between
+ several simulated processes, and thus to reduce the whole memory consumption.
+ These two techniques can help to run simulations on a very large scale.
+ The validity of simulations with SimGrid has been asserted by several studies.
+ See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles
+ referenced therein for the validity of the network models.  Comparisons between
+ real execution of MPI applications on the one hand, and their simulation with
+ SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first,
+   clauss+stillwell+genaud+al.2011.single,
+   bedaride+degomme+genaud+al.2013.toward}.  All these works conclude that
+ SimGrid is able to simulate pretty accurately the real behavior of the
+ applications.
  %%%%%%%%%%%%%%%%%%%%%%%%%
  
  \section{Two-stage multisplitting methods}
@@@ -526,7 -573,8 +579,8 @@@ architectures and scaling up the input 
   Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline
   - &  N$_{x}$ x N$_{y}$ x N$_{z}$  =170 x 170 x 170    \\ \hline
   \end{tabular}
- \caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}}
+ \caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}
+ \AG{La lettre 'x' n'est pas le symbole de la multiplication. Utiliser \texttt{\textbackslash times}.  Idem dans le texte, les figures, etc.}}
  \label{tab:01}
  \end{center}
  \end{table}
@@@ -549,7 -597,8 +603,8 @@@ multisplitting method
    \begin{center}
      \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
    \end{center}
-   \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}}
+   \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}
+ \AG{Utiliser le point comme séparateur décimal et non la virgule.  Idem dans les autres figures.}}
    \label{fig:01}
  \end{figure}
  
@@@ -591,7 -640,8 +646,8 @@@ the  network speed  drops down (variati
  \begin{figure} [ht!]
  \centering
  \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
- \caption{Grid 2x16 and 4x8 with networks N1 vs N2}
+ \caption{Grid 2x16 and 4x8 with networks N1 vs N2
+ \AG{\np{8E-6}, \np{5E-6} au lieu de 8E-6, 5E-6}}
  \label{fig:02}
  \end{figure}
  %\end{wrapfigure}
  \begin{figure} [ht!]
  \centering
  \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
- \caption{Network latency impacts on execution time}
+ \caption{Network latency impacts on execution time
+ \AG{\np{E-6}}}
  \label{fig:03}
  \end{figure}
  
@@@ -650,7 -701,8 +707,8 @@@ magnitude with a latency of $8.10^{-6}$
  \begin{figure} [ht!]
  \centering
  \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
- \caption{Network bandwith impacts on execution time}
+ \caption{Network bandwith impacts on execution time
+ \AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
  \label{fig:04}
  \end{figure}
  
@@@ -818,7 -870,8 +876,8 @@@ geographically distant clusters throug
      \hline
    \end{mytable}
  %\end{table}
-  \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
+  \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES
+ \AG{C'est un tableau, pas une figure}}
   \label{fig:07}
  \end{figure}
  
  CONCLUSION
  
  
- \section*{Acknowledgment}
%\section*{Acknowledgment}
+ \ack
  This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
  
  \bibliographystyle{wileyj}
  \bibliography{biblio}
+ \AG{Warning bibtex à corriger (%
+   \texttt{empty booktitle in Bru95}%
+ ).}
  
  \end{document}