]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015
authorcouturie <raphael.couturier@univ-fcomte.Fr>
Wed, 6 May 2015 13:48:23 +0000 (15:48 +0200)
committercouturie <raphael.couturier@univ-fcomte.Fr>
Wed, 6 May 2015 13:48:23 +0000 (15:48 +0200)
paper.tex

index a3ede4cda85492d5d1217582010bb994b65bf181..8fd9fb4de09be6ab67501ce7f591a104b91bdf3d 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -223,22 +223,22 @@ consult~\cite{myBCCV05c,bahi07,ccl09:ij}.
 \label{sec:04}
 \subsection{Synchronous and asynchronous two-stage methods for sparse linear systems}
 \label{sec:04.01}
-In this paper we focus on two-stage multisplitting methods in their both versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$
+In this paper we focus on two-stage multisplitting methods in their both versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$:
 \begin{equation}
 Ax=b,
 \label{eq:01}
 \end{equation}
-where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). Two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows
+where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). Two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows:
 \begin{equation}
 x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots
 \label{eq:02}
 \end{equation}
-where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system
+where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system:
 \begin{equation}
 A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
 \label{eq:03}
 \end{equation}
-where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, is studied by many authors for example~\cite{Bru95,bahi07}.
+where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}.
 
 \begin{figure}[t]
 %\begin{algorithm}[t]
@@ -259,19 +259,19 @@ where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are compute
 %\end{algorithm}
 \end{figure}
 
-In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on the asynchronous model which allows the communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged
+In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on the asynchronous model which allows communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged:
 \begin{equation}
 k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM,
 \label{eq:04}
 \end{equation}
 where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm.
 
-The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration
+The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration:
 \begin{equation}
 S=[x^1,x^2,\ldots,x^s],~s\ll n.
 \label{eq:05}
 \end{equation}
-At each $s$ outer iterations, the algorithm computes a new approximation $\tilde{x}=S\alpha$ which minimizes the residual
+At each $s$ outer iterations, the algorithm computes a new approximation $\tilde{x}=S\alpha$ which minimizes the residual:
 \begin{equation}
 \min_{\alpha\in\mathbb{R}^s}{\|b-AS\alpha\|_2}.
 \label{eq:06}
@@ -304,11 +304,11 @@ The algorithm in Figure~\ref{alg:02} includes the procedure of the residual mini
 %\end{algorithm}
 \end{figure}
 
-\subsection{Simulation of two-stage methods using SimGrid framework}
+\subsection{Simulation of the two-stage methods using SimGrid toolkit}
 \label{sec:04.02}
 
 One of our objectives when simulating the  application in Simgrid is, as in real
-life, to  get accurate results  (solutions of the  problem) but also  ensure the
+life, to  get accurate results  (solutions of the  problem) but also to ensure the
 test reproducibility  under the same  conditions.  According to  our experience,
 very  few modifications  are required  to adapt  a MPI  program for  the Simgrid
 simulator using SMPI (Simulator MPI). The  first modification is to include SMPI
@@ -316,7 +316,7 @@ libraries  and related  header files  (smpi.h).  The  second modification  is to
 suppress all global variables by replacing  them with local variables or using a
 Simgrid      selector       called      "runtime       automatic      switching"
 (smpi/privatize\_global\_variables). Indeed, global  variables can generate side
-effects on runtime between the threads running in the same process, generated by
+effects on runtime between the threads running in the same process and generated by
 Simgrid  to simulate the  grid environment.
 
 %\RC{On vire cette  phrase ?} \RCE {Si c'est la phrase d'avant sur les threads, je pense qu'on peut la retenir car c'est l'explication du pourquoi Simgrid n'aime pas les variables globales. Si c'est pas bien dit, on peut la reformuler. Si c'est la phrase ci-apres, effectivement, on peut la virer si elle preterais a discussion}The
@@ -345,11 +345,11 @@ In addition, the following arguments are given to the programs at runtime:
 \begin{itemize}
        \item maximum number of inner and outer iterations;
        \item inner and outer precisions;
-       \item maximum number of the gmres's restarts in the Arnorldi process;
-       \item maximum number of iterations qnd the tolerance threshold in classical GMRES;
+       \item maximum number of the GMRES restarts in the Arnorldi process;
+       \item maximum number of iterations and the tolerance threshold in classical GMRES;
        \item tolerance threshold for outer and inner-iterations;
-       \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$) respectively on x, y, z axis;
-       \item matrix diagonal value = 6.0 for synchronous Krylov multisplitting experiments and 6.2 for asynchronous block Jacobi experiments; \RC{CE tu vérifies, je dis ca de tête}
+       \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$) respectively on $x, y, z$ axis;
+       \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments; \RC{CE tu vérifies, je dis ca de tête}
        \item matrix off-diagonal value;
        \item execution mode: synchronous or asynchronous;
        \RCE {C'est ok la liste des arguments du programme mais si Lilia ou toi pouvez preciser pour les  arguments pour CGLS ci dessous} \RC{Vu que tu n'as pas fait varier ce paramètre, on peut ne pas en parler}
@@ -357,7 +357,7 @@ In addition, the following arguments are given to the programs at runtime:
        \item Maximum number of iterations and tolerance threshold for CGLS.
 \end{itemize}
 
-It should also be noticed that both solvers have been executed with the Simgrid selector -cfg=smpi/running\_power which determines the computational power (here 19GFlops) of the simulator host machine.
+It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
 
 %%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%
@@ -367,19 +367,19 @@ It should also be noticed that both solvers have been executed with the Simgrid
 
 In this section, experiments for both Multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described.
 
-\subsection{3D Poisson}
+\subsection{The 3D Poisson problem}
 
 
-We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form
+We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form:
 \begin{equation}
 \frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in the domain~}\Omega
 \label{eq:07}
 \end{equation}
-such that
+such that:
 \begin{equation*}
 \phi(x,y,z)=0\mbox{~on the boundary~}\partial\Omega
 \end{equation*}
-where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that
+where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that:
 \begin{equation}
 \begin{array}{ll}
 \phi^\star(x,y,z)=&\frac{1}{6}(\phi(x-h,y,z)+\phi(x,y-h,z)+\phi(x,y,z-h)\\&+\phi(x+h,y,z)+\phi(x,y+h,z)+\phi(x,y,z+h)\\&-h^2f(x,y,z))
@@ -390,7 +390,7 @@ until convergence where $h$ is the grid spacing between two adjacent elements in
 
 In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic block of the problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries.
 
-\subsection{Study setup and Simulation Methodology}
+\subsection{Study setup and simulation methodology}
 
 First, to conduct our study, we propose the following methodology
 which can be reused for any grid-enabled applications.\\
@@ -399,10 +399,12 @@ which can be reused for any grid-enabled applications.\\
 the application to be tested. Numerical parallel iterative algorithms
 have been chosen for the study in this paper. \\
 
-\textbf{Step 2}: Collect the software materials needed for the
-experimentation. In our case, we have two variants algorithms for the
-resolution of the 3D-Poisson problem: (1) using the classical GMRES; (2) and the Multisplitting method. In addition, the Simgrid simulator has been chosen to simulate the behaviors of the
-distributed applications. Simgrid is running on the Mesocentre datacenter in the University of  Franche-Comte and also in a virtual machine on a simple laptop. \\
+\textbf{Step 2}: Collect the software materials needed for the experimentation.
+In our case, we have two variants algorithms for the resolution of the
+3D-Poisson problem: (1) using the classical GMRES; (2) and the Multisplitting
+method. In addition, the Simgrid simulator has been chosen to simulate the
+behaviors of the distributed applications. Simgrid is running in a virtual
+machine on a simple laptop. \\
 
 \textbf{Step 3}: Fix the criteria which will be used for the future
 results comparison and analysis. In the scope of this study, we retain
@@ -443,23 +445,20 @@ the program output results:
     capacity" of the network is defined as  the maximum of data that can transit
     from one point to another in a unit of time.
 \item the  network latency  (lat :  microsecond) defined as  the delay  from the
-  start time to send  the data from a source and the  final time the destination
-  have finished to receive it.
+  start time to send  a simple data from a source to a destination.
 \end{enumerate}
-Upon  the   network  characteristics,  another  impacting   factor  is  the
-application dependent volume of data exchanged  between the nodes in the cluster
-and  between distant  clusters.  Large volume  of data  can  be transferred  and
-transit between the clusters and nodes during the code execution.
+Upon  the   network  characteristics,  another  impacting   factor  is  the volume of data exchanged  between the nodes in the cluster
+and  between distant  clusters.  This parameter is application dependent.
 
  In  a grid  environment, it  is common  to distinguish,  on the  one hand,  the
- "intra-network" which refers  to the links between nodes within  a cluster and,
+ "intra-network" which refers  to the links between nodes within  a cluster and
  on  the other  hand, the  "inter-network" which  is the  backbone link  between
- clusters.  In   practice,  these  two   networks  have  different   speeds.  The
- intra-network  generally works  like a  high speed  local network  with a  high
bandwith and very low latency. In opposite, the inter-network connects clusters
- sometime via  heterogeneous networks components  throuth internet with  a lower
- speed.  The network  between distant  clusters might  be a  bottleneck for  the
- global performance of the application.
+ clusters.  In   practice,  these  two   networks  have  different   speeds.
+ The intra-network  generally works  like a  high speed  local network  with a
high bandwith and very low latency. In opposite, the inter-network connects
+ clusters sometime via  heterogeneous networks components  throuth internet with
+ a lower speed.  The network  between distant  clusters might  be a  bottleneck
for  the global performance of the application.
 
 \subsection{Comparison of GMRES and Krylov Multisplitting algorithms in synchronous mode}