given application for a given architecture. In this way and in order to reduce
the access cost to these computing resources it seems very interesting to use a
simulation environment. The advantages are numerous: development life cycle,
-code debugging, ability to obtain results quickly~\ldots. In counterpart, the simulation results need to be consistent with the real ones.
+code debugging, ability to obtain results quickly\dots{} In counterpart, the simulation results need to be consistent with the real ones.
In this paper we focus on a class of highly efficient parallel algorithms called
\emph{iterative algorithms}. The parallel scheme of iterative methods is quite
messages). Note that, it is not the case in the synchronous mode where the
number of iterations is the same than in the sequential mode. In this way, the
set of the parameters of the platform (number of nodes, power of nodes,
-inter and intra clusters bandwidth and latency \ldots) and of the
+inter and intra clusters bandwidth and latency, \ldots) and of the
application can drastically change the number of iterations required to get the
convergence. It follows that asynchronous iterative algorithms are difficult to
optimize since the financial and deployment costs on large scale multi-core