]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Corrections coquilles abstruct et intro
authorlilia <lilia@agora>
Thu, 7 May 2015 19:01:19 +0000 (21:01 +0200)
committerlilia <lilia@agora>
Thu, 7 May 2015 19:01:19 +0000 (21:01 +0200)
paper.tex

index c4c39393aeefed46eabaa715b5271a533557d8ad..094f1aa7c26ade55d838a3d675f748498fadb3c4 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 %% execution time. 
 %% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
 %% execution time. 
 %% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
-
 The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. 
 
 The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. 
 
-In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the Multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the GMRES algorithm.
+In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous multisplitting algorithm on distant clusters compared to the GMRES algorithm.
+
 \end{abstract}
 
 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
 \end{abstract}
 
 %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid;
@@ -149,10 +149,10 @@ task cannot begin a new iteration while it has not received data dependencies
 from its neighbors. We say that the iteration computation follows a
 \textit{synchronous} scheme. In the asynchronous scheme a task can compute a new
 iteration without having to wait for the data dependencies coming from its
 from its neighbors. We say that the iteration computation follows a
 \textit{synchronous} scheme. In the asynchronous scheme a task can compute a new
 iteration without having to wait for the data dependencies coming from its
-neighbors. Both communication and computations are \textit{asynchronous}
+neighbors. Both communications and computations are \textit{asynchronous}
 inducing that there is no more idle time, due to synchronizations, between two
 iterations~\cite{bcvc06:ij}. This model presents some advantages and drawbacks
 inducing that there is no more idle time, due to synchronizations, between two
 iterations~\cite{bcvc06:ij}. This model presents some advantages and drawbacks
-that we detail in section~\ref{sec:asynchro} but even if the number of
+that we detail in Section~\ref{sec:asynchro} but even if the number of
 iterations required to converge is generally  greater  than for the synchronous
 case, it appears that the asynchronous  iterative scheme  can significantly
 reduce  overall execution times by  suppressing idle  times due to
 iterations required to converge is generally  greater  than for the synchronous
 case, it appears that the asynchronous  iterative scheme  can significantly
 reduce  overall execution times by  suppressing idle  times due to
@@ -165,7 +165,7 @@ allocations policies under  varying CPU power, network speeds and  loads is very
 challenging and  labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
 problematic is  even more difficult  for the  asynchronous scheme where  a small
 parameter variation of the execution platform and of the application data can
 challenging and  labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
 problematic is  even more difficult  for the  asynchronous scheme where  a small
 parameter variation of the execution platform and of the application data can
-lead to very different numbers of iterations to reach the converge and so to
+lead to very different numbers of iterations to reach the convergence and so to
 very different execution times. In this challenging context we think that the
 use of a simulation tool can greatly leverage the possibility of testing various
 platform scenarios.
 very different execution times. In this challenging context we think that the
 use of a simulation tool can greatly leverage the possibility of testing various
 platform scenarios.
@@ -173,16 +173,16 @@ platform scenarios.
 The  {\bf main  contribution  of  this paper}  is  to show  that  the  use of  a
 simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real
 parallel applications (i.e. large linear  system solvers) can help developers to
 The  {\bf main  contribution  of  this paper}  is  to show  that  the  use of  a
 simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real
 parallel applications (i.e. large linear  system solvers) can help developers to
-better tune their  application for a given multi-core architecture.  To show the
+better tune their  applications for a given multi-core architecture.  To show the
 validity of this approach we first compare the simulated execution of the Krylov
 validity of this approach we first compare the simulated execution of the Krylov
-multisplitting  algorithm   with  the   GMRES  (Generalized   Minimal  Residual)
+multisplitting  algorithm   with  the   GMRES  (Generalized   Minimal  RESidual)
 solver~\cite{saad86} in  synchronous mode.  The simulation  results allow  us to
 solver~\cite{saad86} in  synchronous mode.  The simulation  results allow  us to
-determine  which method  to choose  given a  specified multi-core  architecture.
+determine  which method  to choose  for a given multi-core  architecture.
 Moreover the  obtained results  on different simulated  multi-core architectures
 confirm the  real results  previously obtained  on non  simulated architectures.
 More precisely the simulated results are in accordance (i.e. with the same order
 of magnitude)  with the works  presented in~\cite{couturier15}, which  show that
 Moreover the  obtained results  on different simulated  multi-core architectures
 confirm the  real results  previously obtained  on non  simulated architectures.
 More precisely the simulated results are in accordance (i.e. with the same order
 of magnitude)  with the works  presented in~\cite{couturier15}, which  show that
-the synchronous  multisplitting method  is more efficient  than GMRES  for large
+the synchronous  Krylov multisplitting method  is more efficient  than GMRES  for large
 scale  clusters.   Simulated   results  also  confirm  the   efficiency  of  the
 asynchronous  multisplitting   algorithm  compared  to  the   synchronous  GMRES
 especially in case of geographically distant clusters.
 scale  clusters.   Simulated   results  also  confirm  the   efficiency  of  the
 asynchronous  multisplitting   algorithm  compared  to  the   synchronous  GMRES
 especially in case of geographically distant clusters.
@@ -195,9 +195,9 @@ asynchronous iterative application.
 
 This paper is organized as follows. Section~\ref{sec:asynchro} presents the
 iteration model we use and more particularly the asynchronous scheme.  In
 
 This paper is organized as follows. Section~\ref{sec:asynchro} presents the
 iteration model we use and more particularly the asynchronous scheme.  In
-section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented.
+Section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented.
 Section~\ref{sec:04} details the different solvers that we use.  Finally our
 Section~\ref{sec:04} details the different solvers that we use.  Finally our
-experimental results are presented in section~\ref{sec:expe} followed by some
+experimental results are presented in Section~\ref{sec:expe} followed by some
 concluding remarks and perspectives.
 
 
 concluding remarks and perspectives.