]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Desription du problème à résoudre: 3D Poisson equation
authorlilia <lilia@agora>
Tue, 5 May 2015 22:34:51 +0000 (00:34 +0200)
committerlilia <lilia@agora>
Tue, 5 May 2015 22:34:51 +0000 (00:34 +0200)
biblio.bib
paper.tex

index 7cfae413b222ebe67e1678867dc59597b3eafae7..97de9709bfc56ae0178e583c53b3e48cb434853f 100644 (file)
@@ -172,4 +172,12 @@ number = 2,
 publisher = {Springer},
 year = 2010,
 
-}
\ No newline at end of file
+}
+
+@book{Polyanin01,
+  TITLE = {Handbook of Linear Partial Differential Equations for Engineers and Scientists},
+  AUTHOR = {Polyanin, Andrei D.},
+  PUBLISHER = {Chapman \& Hall/CRC},
+  PAGES = {800},
+  YEAR = {2001}
+}
index 827e7e6474ac700a71e9e2251df201401ae15930..95683d5284e523a99084d8e42b321046e4ff197b 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -358,12 +358,28 @@ It should also be noticed that both solvers have been executed with the Simgrid
 
 In this section, experiments for both Multisplitting algorithms are reported. First the problem sued in our experiments is described.
 
-We use our two-stage algorithms to solve the well-known 3D Poisson problem $\nabla^2\phi=f$, where $\nabla^2$ is the Laplace operator. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form
+We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form
 \begin{equation}
-\frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in~}\Omega
+\frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in the domain~}\Omega
 \label{eq:07}
 \end{equation}
-where the real-valued function $\phi(x,y,z)=0\mbox{~on~}\partial\Omega$ is the solution sought, $f(x,y,z)$ is a known function and the domain $\Omega=[0,1]^3$. 
+such that
+\begin{equation*}
+\phi(x,y,z)=0\mbox{~on the boundary~}\partial\Omega
+\end{equation*}
+where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that      
+\begin{equation}
+\begin{array}{ll}
+\phi^\star(x,y,z)= & \frac{1}{6}(\phi(x-h,y,z)+\phi(x+h,y,z) \\
+                  & +\phi(x,y-h,z)+\phi(x,y+h,z) \\
+                  & +\phi(x,y,z-h)+\phi(x,y,z+h)\\
+                  & -h^2f(x,y,z))
+\end{array}
+\label{eq:08}
+\end{equation}
+until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid. 
+
+In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic sub-problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries. 
 
 \subsection{Study setup and Simulation Methodology}
 
@@ -615,7 +631,7 @@ In this experimentation, the input matrix size has been set from
 N$_{x}$ = N$_{y}$ = N$_{z}$ = 40 to 200 side elements that is from 40$^{3}$ = 64.000 to
 200$^{3}$ = 8.000.000 points. Obviously, as shown in the figure 7,
 the execution time for the two algorithms convergence increases with the
-input matrix size. But the interesting results here direct on (i) the
+iinput matrix size. But the interesting results here direct on (i) the
 drastic increase (300 times) of the number of iterations needed before
 the convergence for the classical GMRES algorithm when the matrix size
 go beyond N$_{x}$=150; (ii) the classical GMRES execution time also almost
@@ -645,7 +661,7 @@ Table 6 : CPU Power impact \\
 \includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
 \caption{CPU Power impact on execution time}
 %\label{overflow}}
-\end{figure}
+s\end{figure}
 
 Using the Simgrid simulator flexibility, we have tried to determine the
 impact on the algorithms performance in varying the CPU power of the