-In these experiments, the matrix size of the 3D Poisson problem is varied from $50^3$ to $190^3$ elements. The simulated computational grid is composed of 4 clusters of 8 processors each interconnected by the network $N2$ (see Table~\ref{tab:01}). Obviously, as shown in Figure~\ref{fig:05}, the execution times for both algorithms increase with increased matrix sizes. For all problem sizes, GMRES algorithm is always slower than the Krylov two-stage algorithm. Moreover, for this benchmark, it seems that the greater the problem size is, the bigger the ratio between execution times of both algorithms is. We can also observe that for some problem sizes, the convergence (and thus the execution time) of the Krylov two-stage algorithm varies quite a lot. %This is due to the 3D partitioning of the 3D matrix of the Poisson problem.
+
+In these experiments, the matrix size of the 3D Poisson problem is varied from
+$50^3$ to $190^3$ elements. The simulated computational grid is composed of $4$
+clusters of $8$ processors each interconnected by the network $N2$ (see
+Table~\ref{tab:01}). As shown in Figure~\ref{fig:05}, the execution
+times for both algorithms increase with increased matrix sizes. For all problem
+sizes, the GMRES algorithm is always slower than the Krylov two-stage algorithm.
+Moreover, for this benchmark, it seems that the greater the problem size is, the
+bigger the ratio between execution times of both algorithms is. We can also
+observe that for some problem sizes, the convergence (and thus the execution
+time) of the Krylov two-stage algorithm varies quite a lot.
+%This is due to the 3D partitioning of the 3D matrix of the Poisson problem.