\todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
\newcommand{\RCE}[2][inline]{%
\todo[color=yellow!10,#1]{\sffamily\textbf{RCE:} #2}\xspace}
+\newcommand{\DL}[2][inline]{%
+ \todo[color=pink!10,#1]{\sffamily\textbf{DL:} #2}\xspace}
\algnewcommand\algorithmicinput{\textbf{Input:}}
\algnewcommand\Input{\item[\algorithmicinput]}
performance for both algorithms by reducing the execution time (see
Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method
presents a better performance in the considered bandwidth interval with a gain
-of 40\% which is only around 24\% for classical GMRES.
+of $40\%$ which is only around $24\%$ for the classical GMRES.
\subsubsection{Input matrix size impacts on performance}
\ \\
Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
Input matrix size & N$_{x}$ = From 40 to 200\\ \hline
\end{tabular}
-\caption{Input matrix size impact}
+\caption{Input matrix size impacts}
\end{figure}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impact on execution time}
+\caption{Problem size impacts on execution time}
\label{fig:05}
\end{figure}
-In these experiments, the input matrix size has been set from N$_{x}$ = N$_{y}$
-= N$_{z}$ = 40 to 200 side elements that is from 40$^{3}$ = 64.000 to 200$^{3}$
-= 8,000,000 points. Obviously, as shown in Figure~\ref{fig:05}, the execution
+In these experiments, the input matrix size has been set from $N_{x} = N_{y}
+= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
+= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
time for both algorithms increases when the input matrix size also increases.
But the interesting results are:
\begin{enumerate}
- \item the drastic increase (300 times) \RC{Je ne vois pas cela sur la figure}
+ \item the drastic increase ($300$ times) \RC{Je ne vois pas cela sur la figure}
of the number of iterations needed to reach the convergence for the classical
-GMRES algorithm when the matrix size go beyond N$_{x}$=150;
-\item the classical GMRES execution time is almost the double for N$_{x}$=140
+GMRES algorithm when the matrix size go beyond $N_{x}=150$;
+\item the classical GMRES execution time is almost the double for $N_{x}=140$
compared with the Krylov multisplitting method.
\end{enumerate}
size scale up. It should be noticed that the same test has been done with the
grid 2x16 leading to the same conclusion.
-\subsubsection{CPU Power impact on performance}
+\subsubsection{CPU Power impacts on performance}
\begin{figure} [ht!]
\centering
Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
\end{tabular}
-\caption{CPU Power impact}
+\caption{CPU Power impacts}
\end{figure}
\begin{figure} [ht!]
\centering
\includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
-\caption{CPU Power impact on execution time}
+\caption{CPU Power impacts on execution time}
\label{fig:06}
\end{figure}
Using the Simgrid simulator flexibility, we have tried to determine the impact
on the algorithms performance in varying the CPU power of the clusters nodes
-from 1 to 19 GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
-performance gain, around 95\% for both of the two methods, after adding more
+from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the
+performance gain, around $95\%$ for both of the two methods, after adding more
powerful CPU.
+\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+besoin de déployer sur une archi réelle}
+
\subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
The previous paragraphs put in evidence the interests to simulate the behavior