]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015
authorDavid Laiymani <david.laiymani@univ-fcomte.fr>
Wed, 6 May 2015 14:24:03 +0000 (16:24 +0200)
committerDavid Laiymani <david.laiymani@univ-fcomte.fr>
Wed, 6 May 2015 14:24:03 +0000 (16:24 +0200)
paper.tex

index 42f4b5d37762f3602b5c5ba46962b6e31f7ca74a..c198158716dd16c064333c68b25f31c38b44232a 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -690,32 +690,30 @@ powerful CPU.
 \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
 
 The previous paragraphs  put in evidence the interests to  simulate the behavior
-of the application before any deployment in a real environment.  We have focused
-the study on analyzing the performance  in varying the key factors impacting the
-results. The study compares the performance  of the two proposed algorithms both
-in  \textit{synchronous mode  }. In  this section,  following the  same previous
-methodology, the  goal is  to demonstrate the  efficiency of  the multisplitting
-method in \textit{ asynchronous mode}  compared with the classical GMRES staying
-in \textit{synchronous mode}.
-
-Note that the interest of using the asynchronous mode for data exchange
-is mainly, in opposite of the synchronous mode, the non-wait aspects of
-the current computation after a communication operation like sending
-some data between nodes. Each processor can continue their local
-calculation without waiting for the end of the communication. Thus, the
-asynchronous may theoretically reduce the overall execution time and can
-improve the algorithm performance.
-
-As stated supra, Simgrid simulator tool has been used to prove the
-efficiency of the multisplitting in asynchronous mode and to find the
-best combination of the grid resources (CPU, Network, input matrix size,
-\ldots ) to get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ / exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
+of  the application  before  any  deployment in  a  real  environment.  In  this
+section, following  the same previous  methodology, our  goal is to  compare the
+efficiency of the multisplitting method  in \textit{ asynchronous mode} with the
+classical GMRES in \textit{synchronous mode}.
+
+The  interest of  using  an asynchronous  algorithm  is that  there  is no  more
+synchronization. With  geographically distant  clusters, this may  be essential.
+In  this case,  each  processor can  compute its  iteration  freely without  any
+synchronization  with   the  other   processors.  Thus,  the   asynchronous  may
+theoretically reduce  the overall execution  time and can improve  the algorithm
+performance.
+
+\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici}
+As stated before, the Simgrid simulator tool has been successfully used to show
+the efficiency of  the multisplitting in asynchronous mode and  to find the best
+combination of the grid resources (CPU,  Network, input matrix size, \ldots ) to
+get    the   highest    \textit{"relative    gain"}   (exec\_time$_{GMRES}$    /
+exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
 
 
 The test conditions are summarized in the table below : \\
 
-% environment
-\begin{footnotesize}
+\begin{figure} [ht!]
+\centering
 \begin{tabular}{r c }
  \hline
  Grid & 2x50 totaling 100 processors\\ %\hline
@@ -725,15 +723,17 @@ The test conditions are summarized in the table below : \\
  Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline
  Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
  \end{tabular}
-\end{footnotesize}
+\end{figure}
 
-Again, comprehensive and extensive tests have been conducted varying the
-CPU power and the network parameters (bandwidth and latency) in the
-simulator tool with different problem size. The relative gains greater
-than 1 between the two algorithms have been captured after each step of
-the test. Table 7 below has recorded the best grid configurations
-allowing the multisplitting method execution time more performant 2.5 times than
-the classical GMRES execution and convergence time. The experimentation has demonstrated the relative multisplitting algorithm tolerance when using a low speed network that we encounter usually with distant clusters thru the internet.
+Again,  comprehensive and  extensive tests  have been  conducted with  different
+parametes as  the CPU power, the  network parameters (bandwidth and  latency) in
+the simulator tool  and with different problem size. The  relative gains greater
+than 1  between the  two algorithms have  been captured after  each step  of the
+test.   In  Figure~\ref{table:01}  are  reported the  best  grid  configurations
+allowing the  multisplitting method to  be more than  2.5 times faster  than the
+classical  GMRES.  These  experiments also  show the  relative tolerance  of the
+multisplitting algorithm when using a low speed network as usually observed with
+geographically distant clusters throuth the internet.
 
 % use the same column width for the following three tables
 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
@@ -744,14 +744,12 @@ the classical GMRES execution and convergence time. The experimentation has demo
     \end{tabular}}
 
 
-\begin{table}[!t]
-  \centering
+\begin{figure}[!t]
+\centering
+%\begin{table}
 %  \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
 %  \label{"Table 7"}
-Table 7. Relative gain of the multisplitting algorithm compared with
-the classical GMRES \\
-
-  \begin{mytable}{11}
+ \begin{mytable}{11}
     \hline
     bandwidth (Mbit/s)
     & 5     & 5     & 5         & 5         & 5  & 50        & 50        & 50        & 50        & 50 \\
@@ -772,7 +770,11 @@ the classical GMRES \\
     & 2.52     & 2.55     & 2.52     & 2.57     & 2.54 & 2.53     & 2.51     & 2.58     & 2.55     & 2.54 \\
     \hline
   \end{mytable}
-\end{table}
+%\end{table}
+ \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
+ \label{table:01}
+\end{figure}
+
 
 \section{Conclusion}
 CONCLUSION