\includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf}
\caption{Various grid configurations with networks $N1$ vs. $N2$}
\LZK{CE, remplacer les ``,'' des décimales par un ``.''}
+\RCE{ok}
\label{fig:02}
\end{figure}
two-stage algorithm in asynchronous mode with GMRES in synchronous mode. Several
benchmarks have been performed with various combinations of the grid resources
(CPU, Network, matrix size, \ldots). The test conditions are summarized
-in Table~\ref{tab:07}. In order to compare the execution times, this table
+in Table~\ref{tab:02}. In order to compare the execution times, Table~\ref{tab:03}
reports the relative gain between both algorithms. It is defined by the ratio
between the execution time of GMRES and the execution time of the
multisplitting.
\LZK{Quelle table repporte les gains relatifs?? Sûrement pas Table II !!}
+\RCE{Table III avec la nouvelle numerotation}
The ratio is greater than one because the asynchronous
multisplitting version is faster than GMRES.
Residual error precision & $10^{-5}$ to $10^{-9}$\\ \hline \\
\end{tabular}
\caption{Test conditions: GMRES in synchronous mode vs. Krylov two-stage in asynchronous mode}
-\label{tab:07}
+\label{tab:02}
\end{table}
\end{mytable}
%\end{table}
\caption{Relative gains of the two-stage multisplitting algorithm compared with the classical GMRES}
- \label{tab:08}
+ \label{tab:03}
\end{table}
Again, comprehensive and extensive tests have been conducted with different