]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015
authorcouturie <raphael.couturier@univ-fcomte.Fr>
Fri, 8 May 2015 09:50:53 +0000 (11:50 +0200)
committercouturie <raphael.couturier@univ-fcomte.Fr>
Fri, 8 May 2015 09:50:53 +0000 (11:50 +0200)
1  2 
paper.tex

diff --combined paper.tex
index 81265832b8f3ef293ab021a567b2c5379ed20e04,60fcffc970e0df9e7d1e85796f3da247859f367c..8a5553037a33766770df3f15fd337bb0583042c7
+++ b/paper.tex
@@@ -442,8 -442,6 +442,6 @@@ In this section, experiments for both m
  
  \subsection{The 3D Poisson problem}
  \label{3dpoisson}
  We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form:
  \begin{equation}
  \frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in the domain~}\Omega
@@@ -489,13 -487,7 +487,7 @@@ and on the other hand the execution tim
  simulated in the  simulator tool to run the program.  The following architectures
  have been configured in SimGrid : 2$\times$16, 4$\times$8, 4$\times$16, 8$\times$8 and 2$\times$50. The first number
  represents the number  of clusters in the grid and  the second number represents
- the number  of hosts (processors/cores)  in each  cluster. The network has been
- designed to  operate with a bandwidth  equals to 10Gbits (resp.  1Gbits/s) and a
- latency of 8.10$^{-6}$ seconds (resp.  5.10$^{-5}$) for the intra-clusters links
- (resp.  inter-clusters backbone links).  \\
- %\LZK{Il me semble que le bw et lat des deux réseaux varient dans les expés d'une simu à l'autre. On vire la dernière phrase?}
- %\RC{il me semble qu'on peut laisser ca}
+ the number  of hosts (processors/cores)  in each  cluster. \\
  
  \textbf{Step 5}: Conduct an extensive and comprehensive testings
  within these configurations by varying the key parameters, especially
@@@ -536,26 -528,17 +528,17 @@@ and  between distant  clusters.  This p
   a lower speed.  The network  between distant  clusters might  be a  bottleneck
   for  the global performance of the application.
  
- \subsection{Comparison of GMRES and Krylov two-stage algorithms in synchronous mode}
- In the scope  of this paper, our  first objective is to analyze  when the Krylov
- two-stage method has  better  performance  than   the  classical  GMRES method. With a synchronous  iterative method, better performance means a
- smaller number of iterations and execution time before reaching the convergence.
- In what follows, we will present the test conditions, the output results and our comments.
  
- %%RAPH : on vire ca, c'est pas clair et pas important
- %For a systematic study,  the experiments  should figure  out  that, for  various
- %grid  parameters values, the simulator will confirm Multisplitting method  better performance compared to classical GMRES, particularly on poor and slow networks.
- %\LZK{Pas du tout claire la dernière phrase (For a systematic...)!!}
- %\RCE { Reformule autrement}
+ \subsection{Comparison between GMRES and two-stage multisplitting algorithms in synchronous mode}
+ In the scope of this paper, our first objective is to analyze when the synchronous Krylov two-stage method has better performance than the classical GMRES method. With a synchronous iterative method, better performance means a smaller number of iterations and execution time before reaching the convergence. In what follows, we will present the test conditions, the output results and our comments. For all simulations, we fix the network parameters of the intra-cluster links: the bandwidth $bw$=10Gbs and the latency $lat$=8$\times$10$^{-6}$.
  
- %\subsubsection{Execution of the algorithms on various computational grid architectures and scaling up the input matrix size}
  \subsubsection{Simulations for various grid architectures and scaling-up matrix sizes}
- \ \\
+ \  \\
  % environment
  
+  The network of intra-clusters links has been
+ designed to  operate with a bandwidth  equals to 10Gbits and a latency of 8$\times$10$^{-6}$ seconds. \\
  \RC{Je ne comprends plus rien CE : pourquoi dans 5.4.1 il y a 2 network et aussi dans 5.4.2. Quelle est la différence? Dans la figure 3 de la section 5.4.1 pourquoi il n'y a pas N1 et N2?}
  
  \begin{table} [ht!]
@@@ -725,7 -708,7 +708,7 @@@ of $40\%$ which is only around $24\%$ f
   \hline
   Grid Architecture & 4 $\times$ 8\\ %\hline
   Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
 - Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 40$^{3}$ to 200$^{3}$\\ \hline
 + Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
   \end{tabular}
  \caption{Test conditions: Input matrix size impacts}
  \label{tab:05}
  \label{fig:05}
  \end{figure}
  
 -In these experiments, the input matrix size  has been set from $N_{x} = N_{y}
 -= N_{z} = 40$ to $200$ side elements  that is from $40^{3} = 64.000$ to $200^{3}
 -= 8,000,000$  points. Obviously, as  shown in Figure~\ref{fig:05},  the execution
 -time for  both algorithms increases when  the input matrix size  also increases.
 -But the interesting results are:
 -\begin{enumerate}
 -  \item the important increase ($10$ times)  of the number of iterations needed to
 -    reach the convergence for the classical GMRES algorithm particularly, when the matrix size
 -    go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
 -    \RCE{Le nombre d'iterations augmente de 10 fois, cela surtout a partir de N=150}
 -    
 -\item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
 -  compared with the Krylov multisplitting method.
 -\end{enumerate}
 +In  these  experiments, the  input  matrix  size has  been  set  from $50^3$  to
 +$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both
 +algorithms increases when the input matrix size also increases.  For all problem
 +sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this
 +benchmark, it seems that  the greater the problem size is,  the bigger the ratio
 +between both  algorithm execution  times is.  We can also  observ that  for some
 +problem   sizes,  the   Krylov   multisplitting  convergence   varies  quite   a
 +lot. Consequently the execution times in that cases also varies.
 +
  
  These  findings may  help a  lot end  users to  setup the  best and  the optimal
  targeted environment for the application deployment when focusing on the problem