-The quantity of disorder generated by such chaotic iterations, when satisfying
-the proposition above, has then been measured. To do so, chaotic iterations
-have first been rewriten as simple discrete dynamical systems, as follows.
-
-
-
-
-
-
-%\frame{
-%\frametitle{Présentation du problème}
-
-%\begin{tabular}{c||c}
-%MATHS DISCRÈTES & TOPOLOGIE MATHÉMATIQUE \tabularnewline
-%\hline
-%\multirow{2}{5cm}{\centering $f: \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$} & $(\mathcal{X},\tau)$ espace topologique\\
-%& $f : \mathcal{X} \to \mathcal{X}$ continue pour $\tau$\\
-%\hline
-%$S \in \mathcal{S} = \llbracket 1,\mathsf{N}\rrbracket^\mathds{N}$ & \multirow{2}{5cm}{\centering $x^0 \in \mathcal{X}$} \\
-%$x^0 \in \mathds{B}^\mathds{N}$ & \\
-%\hline
-%$x_i^{n+1} = \left\{ \begin{array}{ll} x^{n}_{i} & \textrm{ si } i \neq S^n\\ f(x^{n})_{i} & \textrm{ si } i = S^n \end{array} \right.$ & $\forall n \in \mathds{N}, x^{n+1} = f(x^n)$ \\
-%\end{tabular}
-
-%}
-
-
-
-
-
-
-%\frame{
-%\frametitle{Définitions et notations}
-%\begin{block}{Introduisons quelques fonctions...}
-%\begin{itemize}
-%\item décalage: $\sigma : \mathcal{S} \longrightarrow \mathcal{S}, (S^n)_{n \in \mathds{N}} \mapsto (S^{n+1})_{n \in \mathds{N}}$.
-%\item initiale: $i : \mathcal{S} \longrightarrow \llbracket 1 ; \mathsf{N} \rrbracket, (S^n)_{n \in \mathds{N}} \mapsto S^0$
-%\item $F_f : \llbracket 1 ; \mathsf{N} \rrbracket \times \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N},$ $$(k,E) \longmapsto \left( E_j.\delta(k,j) + f(E)_k.\overline{\delta (k,j)} \right)_{j \in \llbracket 1 ; \mathsf{N} \rrbracket}$$
-%\end{itemize}
-%où $\delta(x,y) = \left\{\begin{array}{ll}
-%0 & \textrm{ si } x=y, \\
-%1 & \textrm{ sinon.}
-% \end{array}\right.
-%$
-%\end{block}
-%}
-
-
-
+The second alternative of the proposition above concerns the strategy,
+which should be provided by the outside world. Indeed, in our opinion,
+chaotic iterations can receive a PRNG $S$ as input, and due to
+properties of disorder of $f$, generate a new pseudorandom sequence
+that presents better statistical properties than $S$. Having this
+approach in mind, we thus have searched vectorial Boolean iteration
+functions that are not contractions. The vectorial negation function
+$f_0:\mathds{B}^\mathsf{N} \longrightarrow \mathds{N}^\mathsf{N},$
+$(x_1, \hdots, x_\mathsf{N}) \longmapsto (\overline{x_1}, \hdots,
+\overline{x_\mathsf{N}}) $ is such a function, which served has a
+model in our further studies ($\overline{x}$ stands for the negation
+of the Boolean $x$).
+
+The quantity of disorder generated by such chaotic iterations, when
+satisfying the proposition above, has then been measured. To do so,
+chaotic iterations have first been rewritten as simple discrete
+dynamical systems, as follows.
+
+
+\subsection{Chaotic Iterations as Dynamical Systems}
+
+The problems raised by such a formalization can be summarized as
+follows.
+Chaotic iterations are defined in the discrete mathematics framework,
+considering $x^0 \in \mathds{B}^\mathds{N}$ and $S \in \mathcal{S} = \llbracket 1,\mathsf{N}\rrbracket^\mathds{N}$, and iterations having the
+form
+$$x_i^{n+1} = \left\{ \begin{array}{ll} x^{n}_{i} & \textrm{ si } i \neq S^n\\ f(x^{n})_{i} & \textrm{ si } i = S^n \end{array} \right.$$
+where $f: \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$.
+However, the mathematical theory of chaos takes place into a
+topological space $(\mathcal{X},\tau)$. It studies the iterations
+$x^0 \in \mathcal{X}$, $\forall n \in \mathds{N}, x^{n+1} = f(x^n)$,
+where $f : \mathcal{X} \to \mathcal{X}$ is continuous for the
+topology $\tau$.
+
+To realize the junction between these two frameworks, the following
+material has been introduced~\cite{GuyeuxThese10,bgw09:ip}:
+\begin{itemize}
+\item the shift function: $\sigma : \mathcal{S} \longrightarrow \mathcal{S}, (S^n)_{n \in \mathds{N}} \mapsto (S^{n+1})_{n \in \mathds{N}}$.
+\item the initial function, defined by $i : \mathcal{S} \longrightarrow \llbracket 1 ; \mathsf{N} \rrbracket, (S^n)_{n \in \mathds{N}} \mapsto S^0$
+\item and $F_f : \llbracket 1 ; \mathsf{N} \rrbracket \times \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N},$ $$(k,E) \longmapsto \left( E_j.\delta(k,j) + f(E)_k.\overline{\delta (k,j)} \right)_{j \in \llbracket 1 ; \mathsf{N} \rrbracket}$$
+\end{itemize}
+where $\delta$ is the discrete metric.