+\vspace{-1.5em}\begin{itemize}
+\item Discrete Iterative System:
+\begin{itemize}
+\item $x=(x_1,\dots,x_n)$ : $n$ components, $x_i$ in $\Bool=\{0,1\}$.
+\item A \emph{strategy} \alert<2>{$(S^{t})^{t \in \Nats}$}: sequence of the
+ components that may be updated at time $t$.
+\item Components evolution: defined for times $t=0,1,2,\ldots$
+by:
+$$
+\left\{
+ \begin{array}{l}
+ \alert<2>{x^{0}}\in \Bool^{n} \textrm{ and}\\
+ x^{t+1}= (x^{t+1}_1,\dots,x^{t+1}_n) \textrm{ where }
+ x^{t+1}_i =
+ \left\{
+ \begin{array}{l}
+ \overline{x^{t}_i} \textrm{ if $i = S^t$} \\
+ x^t_i \textrm{ otherwise}
+ \end{array}
+ \right.
+ \end{array}
+\right.
+$$
+\end{itemize}
+\item Theoretical Results~\cite{GuyeuxThese10}\footnote{\bibentry{GuyeuxThese10}}: let $\mathcal{X}$ be
+$ \llbracket 1 ; n \rrbracket^{\Nats} \times
+\Bool^n$. We can define a distance $d$ on $\mathcal{X}$ and
+a function $f: \mathcal{X} \rightarrow \mathcal{X}$ from the
+iterative process
+s.t. $f$ is a continuous and chaotic function.
+\end{itemize}
+