1 #FIG 3.2 Produced by xfig version 3.2.5b
157 6 1530 11160 15570 11880
158 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
159 3089 11205 11626 11205 11626 11835 3089 11835 3089 11205
160 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
161 4365 11205 4365 11835
162 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
163 5715 11205 5715 11835
164 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
165 7515 11205 7515 11835
166 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
167 7605 11520 9630 11520
168 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
169 9675 11205 9675 11835
170 4 2 -1 50 -1 4 10 0.0000 2 150 270 3825 11565 $0$\001
171 4 0 0 50 -1 4 12 0.0000 3 195 5670 5760 11565 $\\displaystyle\\sum_{k=0}^{k=1}\\sum_{j=k.bs}^{j=(k+1).bs-1}z(i,j)$\001
172 4 0 0 50 -1 4 12 0.0000 3 195 3360 4410 11565 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
173 4 0 0 50 -1 4 12 0.0000 3 195 5895 9675 11565 $\\displaystyle\\sum_{k=0}^{k=(n-1)}\\sum_{j=k.bs}^{j=(k+1)bs-1}z(i,j)$\001
174 4 2 0 50 -1 4 12 0.0000 2 180 945 3015 11475 vector $V$\001
175 4 2 0 50 -1 4 12 0.0000 0 195 1485 3015 11655 in global memory\001
177 6 810 13185 4140 13905
178 6 1755 13230 3015 13860
179 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
180 3015 13230 3015 13860
181 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
182 2700 13230 2700 13860
183 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
184 1755 13230 1755 13860
186 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
187 855 13230 4095 13230 4095 13860 855 13860 855 13230
190 6 1755 9045 3015 9675
191 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
193 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
195 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
198 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
199 855 9045 4095 9045 4095 9675 855 9675 855 9045
201 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
202 3 1 1.00 90.00 150.00
204 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
205 3 1 1.00 90.00 150.00
207 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
208 3 1 1.00 90.00 150.00
210 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
211 3 1 1.00 90.00 150.00
213 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
214 3 1 1.00 90.00 150.00
216 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
217 3 1 1.00 90.00 150.00
218 8640 9675 10530 11205
219 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
220 3 1 1.00 90.00 150.00
221 10710 9675 10710 11205
222 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
223 3 1 1.00 90.00 150.00
224 3510 11835 1350 13230
225 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
226 3 1 1.00 90.00 150.00
227 3645 11835 2250 13230
228 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
229 3 1 1.00 90.00 150.00
230 3780 11835 3420 13230
231 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
232 3 1 1.00 90.00 150.00
233 4590 11835 4590 13230
234 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
235 3 1 1.00 90.00 150.00
236 4770 11835 5400 13230
237 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
238 3 1 1.00 90.00 150.00
239 4950 11835 6660 13230
240 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
241 3 1 1.00 90.00 150.00
242 10530 11835 8640 13230
243 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
244 3 1 1.00 90.00 150.00
245 10710 11835 10710 13230
246 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
247 7425 13230 8235 13230
248 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
249 7425 13860 8235 13860
250 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
251 4185 13230 7425 13230 7425 13860 4185 13860 4185 13230
252 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
253 6345 13230 6345 13860
254 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
255 5085 13230 5085 13860
256 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
257 6075 13230 6075 13860
258 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
259 10395 13230 10395 13860
260 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
261 8280 13230 11610 13230 11610 13860 8280 13860 8280 13230
262 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
263 9495 13230 9495 13860
264 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
265 2745 13500 2970 13500
266 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
267 6120 13500 6345 13500
268 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
269 9585 13545 10305 13545
270 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
271 3 1 1.00 90.00 150.00
273 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
275 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
277 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
278 4185 9045 7425 9045 7425 9675 4185 9675 4185 9045
279 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
281 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
283 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
285 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
286 10395 9045 10395 9675
287 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
288 8280 9045 11610 9045 11610 9675 8280 9675 8280 9045
289 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
291 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
293 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
295 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
297 4 0 0 50 -1 4 12 0.0000 3 195 4020 10395 9405 $\\displaystyle\\sum_{j=(n-1)bs}^{j=n.bs-1}z(i,j)$\001
298 4 0 0 50 -1 4 12 0.0000 2 180 645 990 13590 $z(i,0)$\001
299 4 2 -1 50 -1 4 10 0.0000 2 150 825 11610 14040 block $n-1$\001
300 4 2 -1 50 -1 4 10 0.0000 2 150 675 7425 14040 block $1$\001
301 4 2 -1 50 -1 4 10 0.0000 2 150 675 4095 14040 block $0$\001
302 4 0 0 50 -1 4 12 0.0000 2 180 1245 855 14085 row i of $C_z$\001
303 4 0 0 50 -1 4 12 0.0000 0 195 1215 855 14310 in global mem\001
304 4 0 0 50 -1 4 12 0.0000 3 195 3525 10440 13590 $\\displaystyle\\sum_{j=0}^{j=n.bs-1}z(i,j)$\001
305 4 0 0 50 -1 4 12 0.0000 3 195 3585 8325 13590 $\\displaystyle\\sum_{j=0}^{j=(n-1)bs}z(i,j)$\001
306 4 0 0 50 -1 4 12 0.0000 3 195 3465 6345 13590 $\\displaystyle\\sum_{j=0}^{j=2bs-1}z(i,j)$\001
307 4 0 0 50 -1 4 12 0.0000 3 195 3420 5085 13590 $\\displaystyle\\sum_{j=0}^{j=bs+1}z(i,j)$\001
308 4 0 0 50 -1 4 12 0.0000 3 195 3195 4230 13590 $\\displaystyle\\sum_{j=0}^{j=bs}z(i,j)$\001
309 4 0 0 50 -1 4 12 0.0000 3 195 3360 3060 13590 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
310 4 0 0 50 -1 4 12 0.0000 3 195 3090 1800 13590 $\\displaystyle\\sum_{j=0}^{j=1}z(i,j)$\001
311 4 0 0 50 -1 4 12 0.0000 2 180 645 990 9405 $z(i,0)$\001
312 4 0 0 50 -1 4 12 0.0000 2 180 750 4320 9405 $z(i,bs)$\001
313 4 0 0 50 -1 4 12 0.0000 3 195 3570 6390 9405 $\\displaystyle\\sum_{j=bs}^{j=2bs-1}z(i,j)$\001
314 4 0 0 50 -1 4 12 0.0000 3 195 3525 5085 9405 $\\displaystyle\\sum_{j=bs}^{j=bs+1}z(i,j)$\001
315 4 0 0 50 -1 4 12 0.0000 3 195 3360 3015 9405 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
316 4 0 0 50 -1 4 12 0.0000 2 180 1200 8325 9405 $z(i,(n-1).bs)$\001
317 4 0 0 50 -1 4 12 0.0000 3 195 3090 1800 9405 $\\displaystyle\\sum_{j=0}^{j=1}z(i,j)$\001
318 4 2 -1 50 -1 4 10 0.0000 2 150 825 11610 9855 block $n-1$\001
319 4 2 -1 50 -1 4 10 0.0000 2 150 675 7425 9855 block $1$\001
320 4 2 -1 50 -1 4 10 0.0000 2 150 675 4095 9855 block $0$\001
321 4 0 0 50 -1 4 12 0.0000 0 195 1695 855 8955 in GPU global mem\001
322 4 0 0 50 -1 4 12 0.0000 0 195 960 855 8775 prefixsums\001