]> AND Private Git Repository - these_gilles.git/blob - THESE/codes/bm3D/BM3D/BM3D-SAPCA/function_LPAKernelMatrixTheta.m
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
19 sept
[these_gilles.git] / THESE / codes / bm3D / BM3D / BM3D-SAPCA / function_LPAKernelMatrixTheta.m
1 % Return the discrete kernels for LPA estimation and their degrees matrix\r
2 %\r
3 % function [G, G1, index_polynomials]=function_LPAKernelMatrixTheta(h2,h1,window_type,sig_wind,TYPE,theta, m)\r
4 %\r
5 %\r
6 % Outputs:\r
7 %\r
8 % G  kernel for function estimation\r
9 % G1 kernels for function and derivative estimation\r
10 %       G1(:,:,j), j=1 for function estimation, j=2 for d/dx, j=3 for d/dy,\r
11 %                contains 0 and all higher order kernels (sorted by degree:\r
12 %                 1 x y y^2 x^3 x^2y xy^2 y^3 etc...)\r
13 % index_polynomials  matrix of degrees first column x powers, second\r
14 %                    column y powers, third column total degree\r
15 %\r
16 %\r
17 % Inputs:\r
18 %\r
19 % h2, h1  size of the kernel (size of the "asymmetrical portion")\r
20 % m=[m(1) m(2)] the vector order of the LPA    any order combination should work \r
21 % "theta" is an angle of the directrd window\r
22 % "TYPE" is a type of the window support\r
23 % "sig_wind" - vector - sigma parameters of the Gaussian wind\r
24 % "beta"- parameter of the power in some weights for the window function\r
25 %           (these last 3 parameters are fed into function_Window2D function)\r
26 %\r
27 %\r
28 % Alessandro Foi, 6 march 2004\r
29 \r
30 function [G, G1, index_polynomials]=function_LPAKernelMatrixTheta(h2,h1,window_type,sig_wind,TYPE,theta, m)\r
31 global beta\r
32 \r
33 %G1=0;\r
34 m(1)=min(h1,m(1));\r
35 m(2)=min(h2,m(2));\r
36 \r
37 % builds ordered matrix of the monomes powers\r
38 number_of_polynomials=(min(m)+1)*(max(m)-min(m)+1)+(min(m)+1)*min(m)/2;   %   =size(index_polynomials,1) \r
39 index_polynomials=zeros(number_of_polynomials,2);\r
40 index3=1;\r
41 for index1=1:min(m)+1\r
42     for index2=1:max(m)+2-index1\r
43         index_polynomials(index3,:)=[index1-1,index2-1];\r
44         index3=index3+1;\r
45     end\r
46 end\r
47 if m(1)>m(2)\r
48     index_polynomials=fliplr(index_polynomials);\r
49 end\r
50 index_polynomials(:,3)=index_polynomials(:,1)+index_polynomials(:,2);    %calculates degrees of polynomials\r
51 index_polynomials=sortrows(sortrows(index_polynomials,2),3);             %sorts polynomials by degree (x first)\r
52 \r
53 %=====================================================================================================================================\r
54 \r
55 halfH=max(h1,h2);\r
56 H=-halfH+1:halfH-1;\r
57 \r
58 \r
59 % creates window function and then rotates it\r
60 %   win_fun=zeros(halfH-1,halfH-1);\r
61 for x1=H\r
62     for x2=H\r
63         if TYPE==00|TYPE==200|TYPE==300 % SYMMETRIC WINDOW\r
64             win_fun1(x2+halfH,x1+halfH)=function_Window2D(x1/h1/(1-1000*eps),x2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight        \r
65         end\r
66         if TYPE==11|TYPE==211|TYPE==311 % NONSYMMETRIC ON X1,X2 WINDOW\r
67             win_fun1(x2+halfH,x1+halfH)=(x1>=-0.05)*(x2>=-0.05)*function_Window2D(x1/h1/(1-1000*eps),x2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight\r
68         end\r
69         if TYPE==10|TYPE==210|TYPE==310 % NONSYMMETRIC ON X1 WINDOW\r
70             win_fun1(x2+halfH,x1+halfH)=(x1>=-0.05)*function_Window2D(x1/h1/(1-1000*eps),x2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight\r
71         end\r
72         \r
73         if TYPE==100|TYPE==110|TYPE==111 % exact sampling\r
74             xt1=x1*cos(-theta)+x2*sin(-theta);\r
75             xt2=x2*cos(-theta)-x1*sin(-theta);\r
76             if TYPE==100 % SYMMETRIC WINDOW\r
77                 win_fun1(x2+halfH,x1+halfH)=function_Window2D(xt1/h1/(1-1000*eps),xt2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight        \r
78             end\r
79             if TYPE==111 % NONSYMMETRIC ON X1,X2 WINDOW\r
80                 \r
81                 win_fun1(x2+halfH,x1+halfH)=(xt1>=-0.05)*(xt2>=-0.05)*function_Window2D(xt1/h1/(1-1000*eps),xt2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight\r
82             end\r
83             if TYPE==110 % NONSYMMETRIC ON X1 WINDOW\r
84                 \r
85                 win_fun1(x2+halfH,x1+halfH)=(xt1>=-0.05)*function_Window2D(xt1/h1/(1-1000*eps),xt2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight\r
86             end\r
87         end\r
88         \r
89     end\r
90 end\r
91 win_fun=win_fun1;\r
92 if (theta~=0)&(TYPE<100)\r
93     win_fun=imrotate(win_fun1,theta*180/pi,'nearest');     % use 'nearest' or 'bilinear' for different interpolation schemes ('bicubic'...?)\r
94 end\r
95 if (theta~=0)&(TYPE>=200)&(TYPE<300)\r
96     win_fun=imrotate(win_fun1,theta*180/pi,'bilinear');     % use 'nearest' or 'bilinear' for different interpolation schemes ('bicubic'...?)\r
97 end\r
98 if (theta~=0)&(TYPE>=300)\r
99     win_fun=imrotate(win_fun1,theta*180/pi,'bicubic');     % use 'nearest' or 'bilinear' for different interpolation schemes ('bicubic'...?)\r
100 end\r
101 \r
102 \r
103 \r
104 % make the weight support a square\r
105 win_fun2=zeros(max(size(win_fun)));\r
106 win_fun2((max(size(win_fun))-size(win_fun,1))/2+1:max(size(win_fun))-((max(size(win_fun))-size(win_fun,1))/2),(max(size(win_fun))-size(win_fun,2))/2+1:max(size(win_fun))-((max(size(win_fun))-size(win_fun,2))/2))=win_fun;\r
107 win_fun=win_fun2;\r
108 \r
109 \r
110 %=====================================================================================================================================\r
111 \r
112 \r
113 %%%%  rotated coordinates\r
114 H=-(size(win_fun,1)-1)/2:(size(win_fun,1)-1)/2;\r
115 halfH=(size(win_fun,1)+1)/2;\r
116 h_radious=halfH;\r
117 Hcos=H*cos(theta); Hsin=H*sin(theta);\r
118 \r
119 \r
120 %%%% Calculation of FI matrix\r
121 FI=zeros(number_of_polynomials);\r
122 i1=0;\r
123 for s1=H\r
124     i1=i1+1;\r
125     i2=0;\r
126     for s2=H\r
127         i2=i2+1;\r
128         x1=Hcos(s1+h_radious)-Hsin(s2+h_radious);\r
129         x2=Hsin(s1+h_radious)+Hcos(s2+h_radious);\r
130         phi=sqrt(win_fun(s2+halfH,s1+halfH))*(prod(((ones(number_of_polynomials,1)*[x1 x2]).^index_polynomials(:,1:2)),2)./prod(gamma(index_polynomials(:,1:2)+1),2).*(-ones(number_of_polynomials,1)).^index_polynomials(:,3));\r
131         FI=FI+phi*phi';\r
132     end % end of s2\r
133 end % end of s1\r
134 \r
135 %FI_inv=((FI+1*eps*eye(size(FI)))^(-1));  % invert FI matrix\r
136 FI_inv=pinv(FI);   % invert FI matrix (using pseudoinverse)\r
137 G1=zeros([size(H,2) size(H,2) number_of_polynomials]);\r
138 \r
139 %%%% Calculation of mask\r
140 i1=0;\r
141 for s1=H\r
142     i1=i1+1;\r
143     i2=0;\r
144     for s2=H\r
145         i2=i2+1;\r
146         x1=Hcos(s1+h_radious)-Hsin(s2+h_radious);\r
147         x2=Hsin(s1+h_radious)+Hcos(s2+h_radious);\r
148         phi=FI_inv*win_fun(s2+halfH,s1+halfH)*(prod(((ones(number_of_polynomials,1)*[x1 x2]).^index_polynomials(:,1:2)),2)./prod(gamma(index_polynomials(:,1:2)+1),2).*(-ones(number_of_polynomials,1)).^index_polynomials(:,3));\r
149         G(i2,i1,1)=phi(1);              %   Function Est\r
150         G1(i2,i1,:)=phi(:)';  % Function est & Der est on X Y etc...\r
151     end % end of s1\r
152 end % end of s2\r
153 %keyboard