1 #FIG 3.2 Produced by xfig version 3.2.5b
157 6 810 13185 4140 13905
158 6 1755 13230 3015 13860
159 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
160 3015 13230 3015 13860
161 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
162 2700 13230 2700 13860
163 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
164 1755 13230 1755 13860
166 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
167 855 13230 4095 13230 4095 13860 855 13860 855 13230
170 6 1755 9045 3015 9675
171 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
173 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
175 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
178 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
179 855 9045 4095 9045 4095 9675 855 9675 855 9045
181 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
182 3 1 1.00 90.00 150.00
184 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
185 3 1 1.00 90.00 150.00
187 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
188 3 1 1.00 90.00 150.00
190 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
191 3 1 1.00 90.00 150.00
193 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
194 3 1 1.00 90.00 150.00
196 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
197 3 1 1.00 90.00 150.00
198 8640 9675 10530 11205
199 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
200 3 1 1.00 90.00 150.00
201 10710 9675 10710 11205
202 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
203 3 1 1.00 90.00 150.00
204 3510 11835 1350 13230
205 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
206 3 1 1.00 90.00 150.00
207 3645 11835 2250 13230
208 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
209 3 1 1.00 90.00 150.00
210 3780 11835 3420 13230
211 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
212 3 1 1.00 90.00 150.00
213 4590 11835 4590 13230
214 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
215 3 1 1.00 90.00 150.00
216 4770 11835 5400 13230
217 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
218 3 1 1.00 90.00 150.00
219 4950 11835 6660 13230
220 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
221 3 1 1.00 90.00 150.00
222 10530 11835 8640 13230
223 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
224 3 1 1.00 90.00 150.00
225 10710 11835 10710 13230
226 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
227 7425 13230 8235 13230
228 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
229 7425 13860 8235 13860
230 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
231 4185 13230 7425 13230 7425 13860 4185 13860 4185 13230
232 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
233 6345 13230 6345 13860
234 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
235 5085 13230 5085 13860
236 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
237 6075 13230 6075 13860
238 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
239 10395 13230 10395 13860
240 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
241 8280 13230 11610 13230 11610 13860 8280 13860 8280 13230
242 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
243 9495 13230 9495 13860
244 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
245 2745 13500 2970 13500
246 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
247 6120 13500 6345 13500
248 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
249 9585 13545 10305 13545
250 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
251 3 1 1.00 90.00 150.00
253 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
255 2 1 1 2 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
257 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
258 4185 9045 7425 9045 7425 9675 4185 9675 4185 9045
259 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
261 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
263 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
265 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
266 10395 9045 10395 9675
267 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
268 8280 9045 11610 9045 11610 9675 8280 9675 8280 9045
269 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
271 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
273 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
275 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
277 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
278 3089 11205 11626 11205 11626 11835 3089 11835 3089 11205
279 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
280 4365 11205 4365 11835
281 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
282 5715 11205 5715 11835
283 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
284 7515 11205 7515 11835
285 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
286 7605 11520 9630 11520
287 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
288 9675 11205 9675 11835
289 4 0 0 50 -1 4 12 0.0000 3 195 4020 10395 9405 $\\displaystyle\\sum_{j=(n-1)bs}^{j=n.bs-1}z(i,j)$\001
290 4 0 0 50 -1 4 12 0.0000 2 180 645 990 13590 $z(i,0)$\001
291 4 2 -1 50 -1 4 10 0.0000 2 150 855 11610 14040 block $n-1$\001
292 4 2 -1 50 -1 4 10 0.0000 2 150 705 7425 14040 block $1$\001
293 4 2 -1 50 -1 4 10 0.0000 2 150 705 4095 14040 block $0$\001
294 4 0 0 50 -1 4 12 0.0000 2 180 1245 855 14085 row i of $C_z$\001
295 4 0 0 50 -1 4 12 0.0000 2 195 1215 855 14310 in global mem\001
296 4 0 0 50 -1 4 12 0.0000 3 195 3525 10440 13590 $\\displaystyle\\sum_{j=0}^{j=n.bs-1}z(i,j)$\001
297 4 0 0 50 -1 4 12 0.0000 3 195 3585 8325 13590 $\\displaystyle\\sum_{j=0}^{j=(n-1)bs}z(i,j)$\001
298 4 0 0 50 -1 4 12 0.0000 3 195 3465 6345 13590 $\\displaystyle\\sum_{j=0}^{j=2bs-1}z(i,j)$\001
299 4 0 0 50 -1 4 12 0.0000 3 195 3420 5085 13590 $\\displaystyle\\sum_{j=0}^{j=bs+1}z(i,j)$\001
300 4 0 0 50 -1 4 12 0.0000 3 195 3195 4230 13590 $\\displaystyle\\sum_{j=0}^{j=bs}z(i,j)$\001
301 4 0 0 50 -1 4 12 0.0000 3 195 3360 3060 13590 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
302 4 0 0 50 -1 4 12 0.0000 3 195 3090 1800 13590 $\\displaystyle\\sum_{j=0}^{j=1}z(i,j)$\001
303 4 0 0 50 -1 4 12 0.0000 2 180 645 990 9405 $z(i,0)$\001
304 4 0 0 50 -1 4 12 0.0000 2 180 750 4320 9405 $z(i,bs)$\001
305 4 0 0 50 -1 4 12 0.0000 3 195 3570 6390 9405 $\\displaystyle\\sum_{j=bs}^{j=2bs-1}z(i,j)$\001
306 4 0 0 50 -1 4 12 0.0000 3 195 3525 5085 9405 $\\displaystyle\\sum_{j=bs}^{j=bs+1}z(i,j)$\001
307 4 0 0 50 -1 4 12 0.0000 3 195 3360 3015 9405 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
308 4 0 0 50 -1 4 12 0.0000 2 180 1200 8325 9405 $z(i,(n-1).bs)$\001
309 4 0 0 50 -1 4 12 0.0000 3 195 3090 1800 9405 $\\displaystyle\\sum_{j=0}^{j=1}z(i,j)$\001
310 4 2 -1 50 -1 4 10 0.0000 2 150 855 11610 9855 block $n-1$\001
311 4 2 -1 50 -1 4 10 0.0000 2 150 705 7425 9855 block $1$\001
312 4 2 -1 50 -1 4 10 0.0000 2 150 705 4095 9855 block $0$\001
313 4 0 0 50 -1 4 12 0.0000 2 195 1695 855 8955 in GPU global mem\001
314 4 0 0 50 -1 4 12 0.0000 2 195 960 855 8775 prefixsums\001
315 4 2 -1 50 -1 4 10 0.0000 2 150 270 3825 11565 $0$\001
316 4 0 0 50 -1 4 12 0.0000 3 195 5670 5760 11565 $\\displaystyle\\sum_{k=0}^{k=1}\\sum_{j=k.bs}^{j=(k+1).bs-1}z(i,j)$\001
317 4 0 0 50 -1 4 12 0.0000 3 195 3360 4410 11565 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
318 4 0 0 50 -1 4 12 0.0000 3 195 5895 9675 11565 $\\displaystyle\\sum_{k=0}^{k=(n-1)}\\sum_{j=k.bs}^{j=(k+1)bs-1}z(i,j)$\001
319 4 2 0 50 -1 4 12 0.0000 2 180 945 3015 11475 vector $V$\001
320 4 2 0 50 -1 4 12 0.0000 2 195 1485 3015 11655 in global memory\001