]> AND Private Git Repository - these_gilles.git/blob - THESE/Chapters/chapter2/chapter2b.tex~
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
relecture vlad de 0 a 70
[these_gilles.git] / THESE / Chapters / chapter2 / chapter2b.tex~
1 L'étendue des techniques applicables aux images numériques est aujourd'hui si vaste qu'il serait illusoire de chercher à les décrire ici de manière exhaustive. Ce chapitre présente plus spécifiquement les algorithmes utilisés en présence d'images (fortement) bruitées, c'est-à-dire présentant des distorsions par rapport à la réalité \og absolue \fg{} qu'elles représentent. 
2
3 Le bruit rend potentiellement délicate l'extraction des informations utiles contenues dans les images perturbées ou en complique l'interprétation, automatisée ou humaine. 
4 L'intuition incite donc à chercher des méthodes efficaces de pré-traitement réduisant la puissance du bruit et permettant ainsi  aux traitements de plus haut niveau (comme la segmentation), d'opérer dans de meilleures conditions.           
5
6 Toutefois, il faut également considérer que les opérations préalables de réduction de bruit génèrent des modifications statistiques et peuvent altérer  les caractéristiques que l'on cherche à mettre en évidence grâce au traitement principal. En ce sens, il peut être préférable de chercher à employer des algorithmes de haut niveau travaillant directement sur les images bruitées pour en préserver toute l'information, ce qui est le cadre de notre contribution portant sur l'algorithme du \textit{snake} (chapitre \ref{ch-snake}).
7
8 De plus, toute opération supplémentaire si basique soit elle, réduit le temps de traitement disponible pour l'opération de haut niveau. En effet, lorsque les images à analyser sont de grande taille,  procéder à un débruitage préalable peut s'avérer incompatible avec les contraintes de débit.
9
10 Les images auxquelles nous nous intéressons sont généralement les images numériques allant des images naturelles telles que définies par Caselles \cite{Caselles99topographicmaps} aux images d'amplitude issues de l'imagerie radar à ouverture synthétique (ROS ou en anglais SAR) \cite{cutrona1990synthetic}, de l'imagerie médicale à ultrasons (échographie) ou de la microscopie électronique. 
11 Ces dispositifs d'acquisition sont, par essence, générateurs de bruits divers, inhérents aux technologies mises en \oe uvre et qui viennent dégrader l'image idéale de la scène que l'on cherche à représenter ou analyser. On sait aujourd'hui caractériser de manière assez précise ces bruits et la section \ref{sec_bruits} en détaille les  origines physiques ainsi que  les propriétés statistiques qui en découlent.
12 On peut d'ores et déjà avancer que la connaissance de l'origine d'une image et donc des propriétés des bruits associés qui en corrompent les informations, est un atout permettant de concevoir des techniques de filtrage adaptées à chaque situation. Quant à la recherche d'un filtre universel, bien qu'encore illusoire, elle n'est pas abandonnée, tant les besoins sont nombreux, divers et souvent complexes.    
13        
14 \section{Modèle d'image bruitée}
15 On considère qu'une image observée, de largeur $L$ pixels et de hauteur $H$ pixels, est un ensemble de $N=LH$ observations sur un domaine $\Omega$ à deux dimensions ($\Omega \subset \mathbb{Z}^2$). À chaque élément de $\Omega$, aussi appelé \textit{pixel}, est associé un indice unique $k \in [\![1;N]\!]$, une position $x_k=(i,j)_k \in\Omega$ et une valeur observée $v_k=v(i,j)_k$.
16 La valeur observée peut, selon les cas, être de dimension $1$ pour les images représentées en niveaux de gris ou de dimension 3 pour les images couleur représentées au format RVB. Les dimensions supérieures, pour la représentation des images hyperspectrales ne sont pas abordées dans ce manuscrit.
17 L'image observée peut ainsi être considérée comme un vecteur à $N$ éléments $\bar{v}= (v_k)_{k\in [\![1;N]\!]}$.
18 Les divers traitements appliqués aux images observées ont souvent pour but d'accéder aux informations contenues dans une image sous-jacente, débarrassée de toute perturbation, dont nous faisons l'hypothèse qu'elle partage le même support $\Omega$ et que nous notons $\bar{u}$. L'estimation de $\bar{u}$ réalisée par ces traitements est notée $\widehat{\bar{u}} = (\widehat{u}_k)_{k\in [\![1;N]\!]}$.
19 Le lien entre $\bar{u}$ et $\bar{v}$ peut être exprimé par la relation $\bar{v}=\bar{u}+\sigma\epsilon$, où $\epsilon \in \mathbb{R}^N$ représente le modèle de perturbation appliquée à $\bar{u}$ et $\sigma$ représente la puissance de cette perturbation qui a mené à l'observation de $\bar{v}$.
20 Dans le cas général, $\epsilon$ dépend de $\bar{u}$ et est caractérisé par la densité de probabilité (PDF pour Probability Density Function) $p(v|u)$.
21
22 \section{Modèles de bruit}\label{sec_bruits}
23 \subsection{Le bruit gaussien}
24 Le bruit gaussien est historiquement le plus étudié et celui auquel sont dédiées le plus de techniques de débruitage.
25 La génération des images numériques au travers des capteurs CMOS et CCD  est le siège de nombreuses perturbations dues à la technologie de fabrication et à la nature du rayonnement dont ils mesurent l'intensité en différents zones de leur surface, appelées \textit{photosites} \cite{mancuso2001introduction,theuwissen2001ccd}.
26 On distingue en particulier les bruits suivants selon leur origine physique :
27 \begin{itemize}
28 \item la non uniformité de réponse des photosites.
29 \item le bruit de photon
30 \item le bruit de courant d'obscurité
31 \item le bruit de lecture
32 \item le bruit de non uniformité d'amplification des photosites.
33 \end{itemize}
34 On trouve des descriptions détaillées des mécanismes concourant à la génération de ces bruits, entre autres dans \cite{healey1994radiometric} et \cite{kodakccd}.  
35 Dans un certain intervalle usuel d'intensité lumineuse, il est toutefois admis que l'ensemble de ces perturbations peut être représenté par un seul bruit blanc gaussien, de type \textit{additif} (AWGN, Additive White Gaussian Noise), dont la densité de probabilité suit une loi normale de moyenne nulle et de variance $\sigma^2$.
36 On a alors l'expression suivante, où $\sigma >0$ 
37 \[p(v|u)=\frac{1}{\sqrt{2}\pi\sigma}\mathrm{e}^{-\frac{(v-u)^2}{2\sigma^2}}\]
38
39 \subsection{Le speckle}
40 En imagerie radar, sonar ou médicale, les surfaces que l'on veut observer sont \og éclairées \fg{} par des sources cohérentes. Les propriétés locales de ces surfaces sont le siège de réflexions multiples qui interfèrent entre elles pour générer un bruit de tavelures, ou speckle, dont l'intensité dépend de l'information contenue dans le signal observé.
41 Le speckle est ainsi un bruit de type \textit{multiplicatif} qui confère aux observations une très grande variance, laquelle peut être réduite, pour une scène donnée, par moyennage de  plusieurs observations, ou vues. 
42 Si $L$ est le nombre de vues, le speckle est traditionnellement modélisé par la PDF suivante :
43 \[p(v \mid u)=\frac{L^2v^{(L-1)}\mathrm{e}^{-L\frac{v}{u}}}{\Gamma (L)u^L} \]
44 L'espérance vaut $\mathrm{E}\left[v\right]=u$ et la variance $\sigma^2=\frac{u^2}{L}$ est effectivement inversement proportionnelle à $L$, mais pour le cas mono vue où $L=1$, la variance vaut $u^2$, soit un écart type du signal $v$ égal à sa moyenne.
45
46 \subsection{Le bruit \og sel et poivre \fg{}}
47 Le bruit \textit{sel et poivre}, ou bruit \textit{impulsionnel} trouve son origine dans les pixels défectueux des capteurs ou dans les erreurs de transmission. Il tire son nom de l'aspect visuel de la dégradation qu'il produit : des pixels noirs et blancs répartis dans l'image.
48 Le bruit impulsionnel se caractérise par la probabilité $P$ d'un pixel d'être corrompu. La PDF peut alors être exprimée par parties comme suit, pour le cas d'images en 256 niveaux de gris (8 bits) :
49
50 \[p(v \mid u)=
51 \begin{cases}
52 \frac{P}{2}+(1-P) & \text{si $v=0$ et $u=0$}\\
53 \frac{P}{2}+(1-P) & \text{si $v=255$ et $u=255$}\\
54 \frac{P}{2}       & \text{si $v=0$ et $u \neq 0$}\\
55 \frac{P}{2}       & \text{si $v=255$ et $u \neq 255$}\\
56 (1-P)             & \text{si $v=u$ et $u \notin \{0, 255\}$}\\
57 0                 & sinon
58 \end{cases}
59  \]  
60
61 \subsection{Le bruit de Poisson}
62 Aussi appelé \textit{bruit de grenaille} (shot noise), ce type de bruit est inhérent aux dispositifs de détection des photons. Il devient prépondérant dans des conditions de faible éclairement, lorsque la variabilité naturelle du nombre de photons reçus par un photosite par intervalle d'intégration influe sur les propriétés statistiques du signal.
63 Le bruit de grenaille est de type multiplicatif et suit une loi de Poisson. La PDF peut s'écrire comme suit :
64 \[ p(v \mid u)=\mathrm{e}\frac{u^v}{v!}\]
65
66 \section{Les techniques de réduction de bruit}
67 La très grande majorité des algorithmes de réduction de bruit fait l'hypothèse que la perturbation est de type gaussien, même si le développement des systèmes d'imagerie radar et médicale a favorisé l'étude des bruits multiplicatifs du type \textit{speckle} ou \textit{Poisson}.
68 Un très grand nombre de travaux proposant des méthodes de réduction de ces bruits ont été menés, ainsi que beaucoup d'états de l'art et d'études comparatives de ces diverses techniques. Aussi nous focaliserons nous sur les techniques en lien avec les travaux que nous avons menés et qui ont donné lieu à des implémentations efficaces susceptibles de fournir des éléments opérationnels rapides pour le pré-traitement des images. 
69
70 La figure \ref{fig-ny-noises} montre une image de synthèse issue de la base de test COIL \cite{coil}, supposée sans bruit et qui sera considérée comme référence, ainsi que deux versions bruitées, respectivement avec un bruit gaussien d'écart type 25 et un bruit impulsionnel affectant 25\% des pixels. 
71 L'indice de qualité le plus employé pour mesurer la similarité entre deux images est le PSNR (pour Peak Signal to Noise Ratio). Il est exprimé en décibels (dB) et se calcule en appliquant la formule  
72 \[ PSNR = 10log_{10}\left(\frac{D^2}{\displaystyle\frac{1}{N}\sum_{k < N}\left(v_k - u_k\right)^2}\right)\]
73 si l'on cherche à évaluer le PSNR de l'image observée $\bar{v}$ par rapport à l'image de référence $\bar{u}$. Le nombre $D$ représente la dynamique maximale des images, e.g 255 pour des images en niveaux de gris codés sur 8 bits. 
74
75 Cet indicateur seul est cependant insuffisant pour caractériser convenablement la qualité de débruitage d'un filtre, mesure hautement subjective. Un indice global de similarité structurelle (MSSIM pour Mean Structural Similarity Index) a été proposé par Wang \textit{et al.} \cite{Wang04imagequality} et permet, en conjonction avec le PSNR, de garantir une mesure de qualité plus en rapport avec la perception visuelle. Le MSSIM prend ses valeurs dans l'intervalle $[0;1]$ avec une similarité d'autant plus grande que la valeur est proche de 1.  
76
77 \begin{figure}
78   \centering
79   \subfigure[Sans bruit]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/ny256.png}}
80   \subfigure[Bruit gaussien $\sigma=25$, PSNR=22.3~dB MSSIM=0.16]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/ny256_gauss25.png}}
81   \subfigure[Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/ny256_sap25.png}}
82   \caption{Images 256$\times$256 en niveau de gris 8 bits utilisées pour l'illustration des propriétés des filtres. a) l'image de référence non bruitée. b) l'image corrompue par un bruit gaussien d'écart type $\sigma=25$. c) l'image corrompue par un bruit impulsionnel à 25\%.}
83 \label{fig-ny-noises}
84 \end{figure}
85
86 \subsection{Les opérateurs de base}\label{sec-op-base}
87 \subsubsection{Le filtre de convolution}
88 L'opération la plus employée dans les procédés de traitement d'image est sans doute la convolution. Selon les valeurs affectées aux coefficients du masque, le filtrage par convolution permet de réaliser bon nombre de traitements comme la réduction de bruit par moyennage ou noyau gaussien ou encore la détection de contours. 
89 Si la fonction définissant le masque de convolution est notée $h$, l'expression générale de la valeur estimée de pixel de coordonnées $(i,j)$ est donnée par
90 \begin{equation}
91 \widehat{u}(x, y) = \left(\bar{v} * h\right) = \sum_{(i < H)} \sum_{(j < L)}v(x-j, y-i)h(j,i)
92 \label{convoDef}
93 \end{equation}
94 Dans les applications les plus courantes, $h$ est à support borné et de forme carrée et l'on parle alors de la taille du masque pour évoquer la dimension du support.
95  La figure \ref{fig-ny-convo} présente les résultats de la convolution par deux masques débruiteurs \textit{moyenneurs} $h_3$ et $h_5$ de taille différentes, appliqués à l'image corrompue par un bruit gaussien : on voit la diminution des fluctuations mais aussi le flou apporté et qui rend les contours d'autant moins définis que la taille du masque est grande. La troisième image montre l'effet d'un masque gaussien $h_{g3}$. 
96 Les matrices définissant les masques sont les suivantes :
97  
98 \[h_3=\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}, h_{25}=\frac{1}{25}\begin{bmatrix}1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{bmatrix}, h_{dx}= \begin{bmatrix}1&2&1\\2&4&2\\1&2&1\end{bmatrix}\]  
99
100 \begin{figure}
101   \centering
102   \subfigure[Moyenneur 3$\times$3, PSNR=27.6dB MSSIM=0.34]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/convo/ny256_gauss25_moy3.png}}\quad  
103   \subfigure[Moyenneur 5$\times$5, PSNR=27.7dB MSSIM=0.38]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/convo/ny256_gauss25_moy5.png}}\quad
104   \subfigure[Filtre gaussien 3$\times$3, PSNR=27.4dB MSSIM=0.33]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/convo/ny256_gauss25_g3.png}}  
105 \caption{Filtrage par convolution.}
106 \label{fig-ny-convo}
107 \end{figure}
108
109 Lorsque la matrice $h$ définissant le masque peut s'écrire comme le produit de deux vecteurs à une dimension $h_v$ et $h_h$, on parle alors de convolution séparable, qui peut être effectuée en deux étapes distinctes de convolution à une dimension, l'une verticale, l'autre horizontale.
110
111
112 \subsubsection{Le filtre médian}
113 Le filtrage médian \cite{tukey77} est également une opération très employée en pré-traitement pour sa simplicité et ses propriétés de préservation des contours alliées à une capacité de réduction du bruit gaussien importante. 
114 La valeur du niveau de gris de chaque pixel est remplacée par la médiane des niveaux de gris des pixels voisins. Un des intérêts de ce filtre réside dans le fait que la valeur filtrée est une des valeurs du voisinage, contrairement à ce qui se produit lors d'une convolution. Un autre est de bien filtrer les valeurs extrêmes et par conséquent de trouver naturellement son application dans la réduction du bruit impulsionnel.
115 Toutefois, la non-linéraité de cette technique et sa complexité n'en ont pas fait un filtre très utilisé jusqu'à ce que des implémentation efficaces soient proposées, en particulier le filtre à temps de calcul \og constant \fg{} décrit par Perreault et Hebert \cite{4287006}. Il est à noter que le filtrage médian est souvent appliqué en plusieurs passes de voisinage restreint.
116 La figure \ref{fig-ny-median} montre la réduction de bruit impulsionnel obtenu grâce au filtre médian, dans trois conditions distinctes : médian 3$\times$3 en une ou deux passes, puis médian 5$\times$5.
117 \begin{figure}
118   \centering
119   \subfigure[Médian 3$\times$3 une passe, PSNR=26.4~dB MSSIM=0.90]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/median/ny256_sap25_med3.png}}  
120   \subfigure[Médian 3$\times$3 deux passes, PSNR=34.4~dB MSSIM=0.98]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/median/ny256_sap25_med3x2.png}}
121   \subfigure[Médian 5$\times$5 une passe, PSNR=35.1~dB MSSIM=0.98]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/median/ny256_sap25_med5.png}}  
122 \caption{Réduction du bruit impulsionnel par filtre médian.}
123 \label{fig-ny-median}
124 \end{figure}
125
126
127 \subsubsection{Le filtre bilatéral}
128 Le filtre bilatéral \cite{710815} est une composition d'opérations que l'on  peut voir comme un  filtre de convolution dont les coefficients ne dépendraient pas uniquement de la position du pixel courant par rapport au pixel central, mais également de la différence de leurs intensités (cas des images en niveaux de gris). 
129 Si l'on note $\Omega_k$ le voisinage du pixel d'indice $k$, l'expression générale du niveau de gris estimé est donnée par 
130 \[\widehat{u_k}=\displaystyle\frac{\sum_{p\in \Omega_k}\left(F_S(x_p, x_k)F_I(v_p, v_k)v_p\right)}{\sum_{p\in\Omega_k }\left(F_S(x_p, x_k)F_I(v_p, v_k)\right)} \]
131 où $F_S$ et $F_I$ sont les fonctions de pondération spatiale et d'intensité. Classiquement, $F_S$ et $F_I$ sont des gaussiennes de moyennes nulles et d'écarts type $\sigma_S$ et $\sigma_I$.
132 Ce filtre se prête également bien à une utilisation en plusieurs passes sans flouter les contours. Des approximations séparables du filtre bilatéral, comme celle proposée dans \cite{1521458}, permettent d'obtenir des vitesses  d'exécution plus élevées que les versions standards. Une variante à temps de calcul constant a même été proposée en 2008 par Porikli \cite{4587843}.
133 Ce filtre atteint un bon niveau de réduction de bruit gaussien, mais au prix d'un nombre de paramètres plus élevé à régler, ce qu'illustre la figure \ref{fig-ny-bilat} où le filtrage de la même image a été réalisé avec 9 combinaisons de $\sigma_S$ et $\sigma_I$. On y constate que la qualité s'obtient par compromis entre la valeur de $\sigma_S$ et celle de $\sigma_I$ et que le \og meilleur \fg{} résultat parmi nos 9 combinaisons est à chercher à la figure \ref{subfig-bruit-bilat}.    
134 \begin{figure}
135   \centering
136 \subfigure[$\sigma_S=1.0$ et $\sigma_I=0.1$, PSNR=25.6~dB MSSIM=0.25]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_1_01.png}}
137 \subfigure[$\sigma_S=1.0$ et $\sigma_I=0.5$, PSNR=28.0~dB MSSIM=0.36]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_1_05.png}}
138 \subfigure[$\sigma_S=1.0$ et $\sigma_I=1.0$, PSNR=27.9~dB MSSIM=0.36]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_1_1.png}}\\ 
139 \subfigure[$\sigma_S=2.0$ et $\sigma_I=0.1$, PSNR=26.7~dB MSSIM=0.29]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_2_01.png}}
140 \subfigure[$\sigma_S=2.0$ et $\sigma_I=0.5$, PSNR=27.9~dB MSSIM=0.39]{\label{subfig-bruit-bilat}\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_2_05.png}}
141 \subfigure[$\sigma_S=2.0$ et $\sigma_I=1.0$, PSNR=27.5~dB MSSIM=0.38]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_2_1.png}}\\  
142 \subfigure[$\sigma_S=5.0$ et $\sigma_I=0.1$, PSNR=26.8~dB MSSIM=0.29]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_5_01.png}}
143 \subfigure[$\sigma_S=5.0$ et $\sigma_I=0.5$, PSNR=26.8~dB MSSIM=0.37]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_5_05.png}}
144 \subfigure[$\sigma_S=5.0$ et $\sigma_I=1.0$, PSNR=25.9~dB MSSIM=0.36]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_5_1.png}}
145 \caption{Réduction de bruit gaussien par filtrage bilatéral de voisinage 5$\times$5. $\sigma_S$ et $\sigma_I$ sont les écarts type des fonctions gaussiennes de pondération spatiale et d'intensité.}
146 \label{fig-ny-bilat}
147 \end{figure}
148
149 Il existe beaucoup de  variantes d'algorithmes basés sur des moyennes ou médianes locales effectuées sur des voisinages de formes diverses, variables et/ou adaptatives afin de sélectionner le plus finement possible les pixels pris en compte dans le calcul de la valeur filtrée. 
150 Le principal défaut de ces techniques est de générer des aplats dans les zones homogènes et des marches d'escalier dans les zones de transition douce (staircase effect), ces dernières pouvant être considérablement atténuées comme il a été montré dans \cite{BuadesCM06}.
151
152 L'un de ces algorithmes cherche dans l'image bruitée, une portion de la ligne de niveau de chaque pixel et l'utilise ensuite comme voisinage pour le moyennage. Cette technique a été présentée dans \cite{bertaux2004speckle} et employée pour réduire le bruit de speckle. Nous y reviendrons en détail dans le chapitre \ref{ch-lniv}.    
153   
154
155 \subsubsection{Les algorithmes de filtrage par dictionnaire}
156 Ces algorithmes font l'hypothèse qu'il est possible de décrire l'image à débruiter en utilisant une base de fonctions permettant de décomposer l'image en une combinaison linéaire des éléments de cette base. Les bases les plus employées sont les ondelettes \cite{Mallat:2008:WTS:1525499, Daubechies:1992:TLW:130655} ainsi que les fonctions sinusoïdales (DCT \cite{1093941,strang1999discrete}). Les éléments de la base peuvent être prédéterminés ou bien calculés à partir des données de l'image, par exemple en s'appuyant sur une analyse en composantes principales ou après apprentissage \cite{elad2006image}. Le principe du débruitage est de considérer que le bruit est décorellé des fonctions de la base et donc représenté par les petits coefficients de la décomposition, que l'on peut annuler. Diverses politiques de seuillage peuvent alors être appliquées selon le type d'image et le modèle de bruit ayant chacune ses propres avantages et inconvénients. L'intérêt principal de ces méthodes est de bien restituer les transitions rapides (grande énergie), mais elles génèrent en revanche des artefacts dus aux possibles grands coefficients de bruit. 
157 La figure \ref{fig-ny-dwt} illustre cela en montrant le résultat du débruitage obtenu par décomposition en ondelettes et seuillage  \og dur \fg{} : lorsque la valeur du seuil croît, des aplats apparaissent et sont visuellement génants bien que les valeurs des indices de qualité n'aient pas diminué significativement.
158 Certains algorithmes récents, en particulier ceux utilisant une base d'ondelettes adaptative, comme dans \cite{elad2006image} sont proches, en terme de qualité, de l'état de l'art du domaine, avec souvent un avantage lié à des vitesses d'exécution assez rapides.
159
160 \begin{figure}
161   \centering
162   \subfigure[$T=20$, PSNR=26.9~dB MSSIM=0.30]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/wave/ny256_gauss25_dwt20.png}}
163   \subfigure[$T=35$, PSNR=27.6~dB MSSIM=0.36]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/wave/ny256_gauss25_dwt.png}}
164   \subfigure[$T=70$, PSNR=26.7~dB MSSIM=0.37]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/wave/ny256_gauss25_dwt70.png}}
165 \caption{Filtrage par décomposition en ondelettes et seuillage dur des coefficients inférieurs au seuil $T$.}
166 \label{fig-ny-dwt}
167 \end{figure}
168
169
170 \subsection{Les algorithmes de filtrage par patches}
171 Les techniques de réduction de bruit les plus efficaces sont aujourd'hui celles qui reposent sur les propriétés d'auto-similarité des images, on les appelle aussi les techniques par patches. L'idée principale est, comme pour les techniques classiques à base de voisinage, de rechercher un ensemble de pixels pertinents et comparables afin d'en faire une moyenne. Cependant, dans le cas des techniques à patches, la recherche de cet ensemble ne se limite pas à un voisinage du pixel central, mais fait l'hypothèse qu'il existe des zones semblables au voisinage du pixel central, réparties dans l'image et pas nécessairement immédiatement contiguës.
172 Le moyennage s'effectue alors sur l'ensemble de ces zones identifiées.
173 L'algorithme des moyennes non locales (NL-means, \cite{1467423}), parmi les premiers de cette lignée à être proposé, bien qu'ayant représenté un progrès notable dans la qualité de débruitage, fut rapidement suivi, en particulier par le BM3D et ses variantes qui représentent actuellement ce qui se fait de mieux en terme de qualité de débruitage \cite{Dabov06imagedenoising,Dabov09bm3dimage}.  
174
175 Les différences entre ces algorithmes résident essentiellement dans la méthode de recherche et d'identification des patches similaires, incluant la possiblité de forme et taille variables. Une telle recherche est d'autant plus coûteuse en temps de calcul qu'elle est effectuée sur une zone étendue autour du patch central et cela représente le principal inconvénient de ces techniques qui peuvent présenter des temps d'exécution prohibitifs dans l'optique d'un traitement en temps réel.
176 La figure \ref{fig-ny-nlm} montre des résultats de débruitage obtenus par la méthode des NL-means avec plusieurs combinaisons des paramètres de similarité des patches et de non localité du voisinage, notés $f$ et $t$. La figure \ref{fig-ny-bm3d} montre quant à elle le résultat du débruitage par BM3D. Les points forts de ces deux techniques sont, comme on le voit, la qualité du débruitage avec pour l'implémentation BM3D l'avantage de ne nécessiter aucun réglage de paramètres.
177 \begin{figure}
178   \centering
179   \subfigure[$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/nlmeans/ny256_gauss25_nlm_2_2_25.png}}\quad
180   \subfigure[$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/nlmeans/ny256_gauss25_nlm_2_5_25.png}}\quad
181 \subfigure[$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/nlmeans/ny256_gauss25_nlm_5_2_25.png}}\quad
182 \subfigure[$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/nlmeans/ny256_gauss25_nlm_5_5_25.png}}
183 \caption{Filtrage par NL-means pour différentes combinaisons des paramètres de similarité $f$ et de non localité $t$.}
184 \label{fig-ny-nlm}
185 \end{figure}
186 \begin{figure}
187   \centering
188   \includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/bm3D/ny256_gauss25_bm3D.png}
189 \caption{Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}
190 \label{fig-ny-bm3d}
191 \end{figure}
192
193 \section{Les implémentations sur GPU des algorithmes de filtrage\label{sec-filtresgpu}}
194 Le fabricant de processeurs graphiques Nvidia, seul type d'équipements dont nous disposons, fournit des implémentations performantes de certains pré-traitements et algorithmes de filtrage. 
195 C'est le cas des transformées de fourrier (FFT, DCT), qui sont par exemple utilisées dans l'implémentation d'un algorithme d'\textit{inpainting} \cite{cmla2009Kes} et de l'opération de convolution dont l'étude est présentée ci-dessous. 
196
197 \subsection{Le filtrage par convolution}
198 L'opération de convolution a fait l'objet d'une étude et d'une optimisation poussées par le fabricant Nvidia pour déterminer la combinaison de solutions apportant la plus grande vitesse d'exécution \cite{convolutionsoup}. L'étude a testé 16 versions distinctes, chacune présentant une optimisation particulière quant à l'organisation de la grille de calcul, aux types de transferts de données entre l'hôte et le GPU ainsi qu'aux types de mémoire employés pour le calcul sur le GPU. 
199
200 Les résultats montrent que l'emploi de texture comme mémoire principale pour le stockage des images à traiter apporte un gain d'environ 50\% par rapport à l'utilisation de la mémoire globale. Par ailleurs, les transactions par paquets de 128 bits apportent également une amélioration sensible, ainsi que l'emploi de la mémoire partagée comme zone de travail pour le calcul des valeurs de sortie. Le traitement de référence effectué pour les mesures est la convolution générique (non séparable) d'une image 8 bits de 2048$\times$2048 pixels par un masque de convolution de 5$\times$5 pixels, expression que l'on raccourcira dorénavant en \textit{convolution 5$\times$5}.
201
202 Le meilleur résultat obtenu dans les conditions détaillées précédemment, sur architecture GT200 (carte GTX280) est de 1.4~ms pour le calcul, ce qui représente un débit global de 945~MP/s lorsque l'on prend en compte les temps de transfert aller et retour des images (1.5~ms d'après nos mesures).
203 Nous continuerons d'utiliser cette mesure de débit en \textit{pixels par seconde} pour toutes les évaluations à venir ; elle permet en particulier de fournir des valeurs de performance indépendantes de la taille des images soumises au traitement.
204
205 \subsection{Le filtre médian}\label{sec-median}
206 On connaît peu de versions GPU du filtre médian, peut-être en raison des implémentations CPU performantes et génériques que l'on a déjà évoquées (voir par exemple \cite{4287006}) et dont le portage sur GPU ne laisse pas entrevoir de potentiel, ou bien reste à inventer. Néanmoins, une bibliothèque commerciale (LibJacket et ArrayFire) en propose une implémentation GPU dont nous avons pu mesurer les performances pour un masque de 3$\times$3 et qui est également prise comme référence par Sanchez \textit{et al.} pour évaluer les performances de leur propre implémentation appelée PCMF \cite{6288187}. 
207
208 Sur architecture GT200 (GTX260), les performances maximales de ces deux versions sont obtenues pour un masque de 3$\times$3 pixels avec respectivement 175~MP/s pour libJacket et 60~MP/s pour PCMF (transferts de données compris). 
209 Une précédente implémentation avait été réalisée, basée sur l'algorithme BVM décrit dans \cite{5402362}. Elle prouve son efficacité dans l'élimination des artefacts générés par les dispositifs d'imagerie médicale magnétique en 3D \cite{chen09}, mais ne permet pas d'exploiter véritablement le parallélisme des GPU en filtrage d'image en 2D.
210
211 \begin{figure}
212   \centering
213   \subfigure[Sur GPU GTX260. Courbe tirée de \cite{5402362}]{\label{fig-compare-jacket-pcmf1}\includegraphics[width=7cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/compar-median1.png}}\quad
214   \subfigure[Sur GPU C2075. Courbe tirée de \cite{sanchez2013highly}]{\label{fig-compare-jacket-pcmf2}\includegraphics[width=7cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/compar-median2.png}}
215 \caption{Performances relatives des filtres médians implémentés sur GPU dans libJacket/ArrayFire, PCMF et BVM et exécutés sur deux modèles de générations différentes.}
216 \label{fig-compare-jacket-pcmf}
217 \end{figure}
218
219 La figure \ref{fig-compare-jacket-pcmf1}, tirée de \cite{5402362}, compare ces trois implémentations et montre que le débit permis par la libJacket décroit très vite avec la taille du masque pour passer à 30~MP/s dès la taille 5$\times$5, alors que le PCMF décroit linéairement jusqu'à la taille 11$\times$11 où il permet encore de traiter quelque 40~MP/s. Ceci s'explique simplement par le fait que libJacket utilise un tri simple pour la sélection de la valeur médiane alors que le PCMF exploite les propriétés des histogrammes cumulés et n'est ainsi que très peu dépendant de la taille du masque.
220  
221 Plus récemment, Sanchez \textit{et al.} ont actualisé dans \cite{sanchez2013highly} leurs mesures sur architecture Fermi (GPU C2075) en comparant leur PCMF à la version ré-écrite en C de libJacket, nommée ArrayFire. Les courbes sont celles de la figure \ref{fig-compare-jacket-pcmf2}, où l'on constate que les variations selon la taille du masque demeurent comparables, avec toutefois des valeurs de débit augmentées, avec près de 185~MP/s pour ArrayFire et 82~MP/s pour PCMF. 
222
223 Parallèlement, on trouve aussi des implémentations de filtre médian dans des traitements plus complexes comme dans \cite{aldinucci2012parallel} où les auteurs décrivent la plus récente évolution de leur technique itérative de réduction de bruit impulsionnel, sans qu'il soit possible d'évaluer le débit du médian seul. 
224
225 Il faut noter enfin que certains codes sont plus performants sur l'ancienne architecture GT200/Tesla que sur la plus récente Fermi ; c'est le cas pour l'implémentation du médian incluse dans la bibliothèque ArrayFire et nous reviendrons sur les raisons de cette perte de performances constatée au passage à une architecture plus récente dans le chapitre \ref{ch-median} consacré à notre implémentation du filtre médian.
226
227 \subsection{Le filtre bilatéral}\label{sec-bilateral}
228 Le filtre bilatéral a été plus étudié et un certain nombre de publications font état d'implémentations rapides. 
229 Une implémentation à temps constant en est proposée par Yang \textit{et al.} \cite{5206542} et s'exécute entre 3.7~ms et 15~ms pour une image de 1~MP. Cela ne constitue pas une référence de vitesse pour les masques de petite taille, mais devient compétitif pour des masques de grande taille (plus de 400 pixels dans le voisinage).
230 Une autre plus classique, employée dans la génération des images médicales tomographiques, annonce 16~ms pour un masque de 11$\times$11 sur une image de 0.25~MP.
231 Il demeure souvent  difficile de comparer les implémentations sans disposer des codes sources, en raison de conditions de test très variables, en particulier en ce qui concerne le modèle de GPU et la taille du masque. 
232 Ceci étant précisé, on peut prendre comme première référence la version proposée par Nvidia dans le SDK CUDA et nommée \og ImageDenoising \fg. Elle permet d'exécuter sur GPU GTX480 un filtre bilatéral 7$\times$7 sur une image, déjà en mémoire GPU, de 1~MP en 0.411~ms, pour un débit global de 133~MP/s.
233
234 Dans \cite{zheng2011performance}, les auteurs présentent un cadre général pour optimiser l'accès aux données par les différents \textit{kernels} en utilisant la mémoire partagée pour les threads d'un même bloc. 
235 Le principe est de pré-charger les valeurs utiles au bloc de threads dans la mémoire partagée, c'est-à-dire les valeurs (niveaux de gris) des pixels associés aux threads ainsi que le halo correspondant aux voisinages des pixels de la bande périphérique. On appelle communément cet ensemble la \textit{region of interest} ou ROI. La figure \ref{fig-prefetch-zheng} illustre la mise en \oe uvre de cette technique en montrant comment les threads d'un bloc se répartissent les pré-chargements en mémoire partagée des valeurs des pixels de la ROI. La géométrie des blocs de threads est ici choisie carrée, mais elle s'applique aisément à d'autres proportions comme nous le verrons plus loin. Les limites de cette méthode sont : 
236 \begin{itemize}
237 \item la taille de la mémoire partagée qui doit pouvoir stocker l'ensemble des valeurs des pixels de la ROI, ce qui peut imposer une limite sur la taille des blocs de threads.
238 \item l'étendue du voisinage qui ne peut être pré-chargé de cette façon (4 pixels par thread) que si la surface de la ROI demeure inférieure à 4 fois le nombre de threads par bloc. 
239 \end{itemize}
240
241 \begin{figure}
242   \centering
243   \includegraphics[width=10cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/shmem_prefetch_zheng2011.png}
244 \caption{Illustration du pré-chargement en mémoire partagée mis en \oe uvre dans \cite{zheng2011performance} pour l'implémentation, entre autres, du filtre bilatéral. a) en vert le bloc de threads associé aux pixels centraux. b-e) les blocs de pixels successivement pré-chargés en mémoire partagée. f) la configuration finale de la ROI en mémoire partagée.}
245 \label{fig-prefetch-zheng}
246 \end{figure}
247
248 Cette recette est ensuite appliquée dans l'implémentation d'un filtre bilatéral et d'un filtre à moyennes non locales (NL-means). Concernant le filtre bilatéral, les auteurs pré-calculent aussi les coefficients de la pondération spatiale, alors que ceux de la pondération d'intensité restent calculés à la volée.
249 Ces deux optimisations permettent un gain de 20\% sur le temps de calcul du filtre bilatéral pour arriver à 0.326~ms dans les mêmes conditions que ci-dessus (bilatéral 7$\times$7 sur image 1~MP). Toutefois, le débit global ne progresse pas (132~MP/s) en raison de la prépondérance des temps de transfert annoncés à 7.5~ms pour l'image de 1~MP, alors qu'ils n'éataient que de 7.1~ms dans les conditions décrites par Nvidia.
250
251 Ce travail d'optimisation ne perd toutefois pas son intérêt dans la mesure où, si le filtre fait partie d'une chaîne de traitement entièrement exécutée par le GPU, le transfert des données n'a besoin d'être effectué qu'une seule fois en tout début et en toute fin de traitement.  
252
253 Enfin, l'implémentation qui semble à ce jour la plus performante s'attache à réduire les redondances de calculs et parvient à filtrer une image de 9~MP avec un masque de 21$\times$21 en seulement 200~ms, soir un débit de 47~MP/s hors transfers.
254
255 \subsection{Les filtres par patches}  
256 Intuitivement, les algorithmes à base de patches paraissent moins adaptés au parallélisme des GPU, du fait de la nécessité d'accéder à un voisinage étendu autour de chaque pixel. On en recense tout de même quelques implémentations, comme celle présente dans le SDK CUDA qui fait l'hypothèse que les coefficients de pondération spatiale sont localement constants.   
257 Dans \cite{PALHANOXAVIERDEFONTES}, le modèle de bruit employé vise une adaptation aux images échographiques présentant du bruit proche du speckle. Dans cette implémentation, aucune approximation des coefficients n'est faite, mais la taille maximale du patch est limitée par la quantité de mémoire partagée disponible pour chaque bloc de threads. 
258 Une version plus récente implémente exactement l'algorithme original \cite{nlmeansgpubelge} en proposant des optimisations algorithmiques exploitant la symétrie des coefficients spatiaux ainsi que l'interprétation du calcul de la similarité comme une convolution séparable, opération aisément parallélisable sur GPU, comme nous le détaillerons plus loin. Les auteurs parviennent ainsi à filtrer des séquences vidéo couleur de dimension 720$\times$480 à plus de 30~fps en améliorant le PSNR de 16~dB (la séquence bruitée présentant un PSNR de 20~dB). 
259
260
261 \section{Les techniques de segmentation}
262 La segmentation représente un enjeu particulièrement important dans le domaine du traitement d'image et a ainsi fait l'objet d'abondants travaux et publications touchant les nombreux cas d'analyse dans lesquels une segmentation est utilisée. On peut citer la reconnaissance de formes, la détections et/ou la poursuite de cibles, la cartographie, le diagnostic médical, l'interaction Homme-machine, la discrimination d'arrière plan, etc.
263
264 On pourrait donner de la segmentation une définition spécifique par type d'usage, mais dans un souci d'unification, nous proposons la formulation générique suivante :\\
265 \og La segmentation consiste à distinguer des zones homogènes au sein d'une image \fg{}.\\
266 Le caractère \textit{homogène} s'entend au sens d'un critère pré-établi, adapté aux contraintes particulières de traitement comme le type de bruit corrompant les images, le modèle d'image ou bien la dimension du signal observé $\bar{v}$ selon que l'image est en couleur ou non. Un tel critère peut ainsi être un simple seuil de niveau de gris ou bien nécessiter de coûteux calculs statistiques dont certains seront détaillés dans les chapitres suivants.
267
268 Devant la diversité des cas à traiter et des objectifs à atteindre, on sait aujourd'hui qu'à l'instar du filtre unique, la méthode universelle de segmentation n'existe pas et qu'une bonne segmentation est celle qui conduit effectivement à l'extraction des structures pertinentes d'une image selon l'interprétation qui doit en être faite.
269
270 Les éléments constitutifs de la segmentation sont soit des régions (les segments), soit des contours. Les deux notions sont complémentaires étant donné que les contours délimitent des régions, mais les techniques de calcul basées sur l'un ou l'autre de ces éléments relèvent d'analyses différentes.
271
272 Les algorithmes de segmentation orientés régions s'appuient pour beaucoup sur des techniques de regroupement, ou \textit{clustering}, pour l'identification et le peuplement des régions. Ce lien trouve son origine dans la théorie du \textit{gestalt} \cite{humphrey1924psychology} où l'on considère que la perception conceptuelle s'élabore au travers de regroupements visuels d'éléments.
273
274 La plupart des approches proposées jusqu'à très récemment consistent à minimiser une fonction d'énergie qui n'a pas de solution formelle et que l'on résout donc à l'aide de techniques numériques souvent itératives.   
275
276 \subsection{Analyse d'histogramme}\label{sec-histo}
277 Les techniques de segmentation les plus simples à mettre en \oe uvre sont dites \og de seuillage \fg{} et basées sur une analyse de l'histogramme des niveaux de gris (ou de couleurs). Elles cherchent à distinguer les différentes classes comme autant d'occurrences représentant des \textit{régions} homogènes.
278 Différents critères peuvent être appliqués pour cette analyse, visant par exemple à maximiser la variance \cite{4310076} ou encore à maximiser le contraste pour déterminer les valeurs pertinentes des seuils. 
279
280 Malgré la multitude de variantes proposées, ces méthodes demeurent  peu robustes et présentent l'inconvénient majeur de ne pas garantir la connexité des régions déterminées. On les réserve à des applications très spécifiques où, par exemple, on dispose d'une image de référence dont l'histogramme peut être comparé à celui des images à traiter. C'est le cas de certaines applications de contrôle industriel où la simplicité algorithmique permet de surcroît des implémentations très rapides, voire câblées.
281
282 Ces techniques peuvent  aujourd'hui être considérées comme rudimentaires mais les calculs d'histogrammes et les analyses associées interviennent dans beaucoup d'algorithmes récents parmi les plus évolués et performants. 
283 La figure \ref{fig-histo-cochon} illustre le traitement typique de l'histogramme de l'image d'entrée \ref{fig-histo-cochon-a} dans le but de distinguer les deux régions du fond et du cochon (la cible). La première étape consiste à dresser l'histogramme des niveaux de gris sur tout le domaine de l'image \ref{fig-histo-cochon-b}. Il faut ensuite identifier le seuil de séparation des deux régions supposées, ici, homogènes au sens des valeurs de niveau de gris. Une estimation visuelle peut-être faite, mais on voit immédiatement que même dans une situation aussi claire, le choix du seuil n'est pas évident. Pour un traitement automatique, on peut par exemple proposer la technique itérative présentée par l'Algorithme  \ref{algo-histo-cochon} qui conduit à la segmentation de la figure \ref{fig-histo-cochon-c}. 
284 Le principe mis en \oe uvre est de fixer arbitrairement une valeur initiale au seuil (ici 128), puis de calculer les \og poids \fg{} respectifs des valeurs situées au-dessus et en-dessous de ce seuil (ligne 6). Cette évaluation de la répartition énergétique permet d'ajuster la valeur du seuil (ligne 8), puis de recommencer jusqu'à convergence, lorsque l'écart entre deux valeurs successives du seuil devient inférieur à une limite fixée à l'avance ($\epsilon$, ligne 9).       
285
286 L'image \ref{fig-histo-cochon-d} est l'image initiale, corrompue par un bruit gaussien de moyenne nulle et d'écart type 25. Les résultats de la segmentation (\ref{fig-histo-cochon-c} et \ref{fig-histo-cochon-f}) de cette image sont clairement insuffisants : les régions identifiées présentent des discontinuités et dans le cas de l'image bruitée, quantité de pixels orphelins subsistent en quantité. Cette technique nécessiterait une étape supplémentaire pour obtenir une segmentation pertinente.
287
288 \begin{figure}
289   \centering
290   \subfigure[Image initiale comportant deux zones : le fond et le cochon (la cible)]{\label{fig-histo-cochon-a} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/cochon256.png}}\quad
291   \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-b} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/histo-cochon256.png}}\quad
292   \subfigure[Image binaire représentant la segmentation. Seuil estimé à 101 après 4 itérations.]{\label{fig-histo-cochon-c} \includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/cochon256-seghisto-101-255.png}}\\
293 \subfigure[Image initiale bruitée]{\label{fig-histo-cochon-d} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/cochon256-sig25.png}}\quad
294   \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-e} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/histo-cochon256-sig25.png}}\quad
295   \subfigure[Image binaire représentant la segmentation. Seuil estimé à 99 après 5 itérations.]{\label{fig-histo-cochon-f} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/cochon256-sig25-seghisto-99-255.png}}
296   \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation.}
297 \label{fig-histo-cochon}
298 \end{figure}
299  
300 \begin{algorithm}
301   %\SetNlSty{textbf}{}{:}
302   %\SetKwComment{Videcomment}{}{}
303 \caption{Calcul du seuil de séparation des segments de l'histogramme.}   
304 \label{algo-histo-cochon}
305 $\overline{h} \leftarrow $ histogramme sur l'image \;
306 $S_{init} \leftarrow 128$ \;
307 $S_k \leftarrow S_{init}$ \;
308 $\epsilon \leftarrow 1$ \;
309 \Repeat{$\|S_k - \frac{1}{2}(\mu_{inf} + \mu_{sup})\| < \epsilon $}{
310   $\mu_{inf}=\displaystyle \frac{\displaystyle\sum_{i<S_k}h_ii}{\displaystyle\sum_{i<S_k}h_i}$ \;
311   $\mu_{sup}=\displaystyle \frac{\displaystyle\sum_{i\geq S_k}h_ii}{\displaystyle\sum_{i\geq S_k}h_i}$ \;
312   $S_k = \frac{1}{2}(\mu_{inf} + \mu_{sup})$ \ ;
313
314 \end{algorithm}
315
316 \subsection{Partitionnement de graphe}
317 Un autre formalisme qui a généré une vaste classe d'algorithmes de segmentation est celui des graphes. Il repose sur l'idée que les régions de l'image sont représentées par les n\oe uds du graphe, alors que les liens traduisent les relations de voisinage existant entre les régions, l'idée de base étant d'initialiser le graphe avec un n\oe ud pour chaque pixel. La segmentation est obtenue par partitionnement itératif du graphe, en évaluant les liens et en déterminant ceux à supprimer, et ce jusqu'à convergence.
318
319 L'essentiel de la problématique réside donc dans la métrique retenue pour évaluer les liens ainsi que dans le critère de sélection et, là encore, la littérature regorge d'une grande variété de propositions.
320 Les premières d'entre elles, qui n'étaient pas spécifiquement dédiées à la segmentation d'images numériques mais au regroupement d'éléments répartis sur un domaine (1D ou 2D), ont été élaborées autour d'une mesure locale des liens basée sur la distance entre les éléments. La réduction du graphe est ensuite effectuée en utilisant un algorithme spécifique, comme le \textit{minimum spanning tree}, dont l'application a été décrite dès 1970 dans \cite{Zahn:1971:GMD:1309266.1309359} et où il s'agit simplement de supprimer les liens \textit{inconsistants}, c'est à dire ceux dont le poids est significativement plus élevé que la moyenne des voisins se trouvant de chaque coté du lien en question.
321
322 Le principe en a rapidement été étendu aux images numériques en ajoutant l'intensité des pixels au vecteur des paramètres pris en compte dans l'évaluation du poids des liens.
323 D'autres critères de partitionnement ont été élaborés, avec pour ambition de toujours mieux prendre en compte les caractéristiques structurelles globales des images pour parvenir à une segmentation conduisant à une meilleure perception conceptuelle.
324 Le principe général des solutions actuelles repose sur la construction d'une matrice de similarité qui traduit les liens entre les segments et représente le graphe à partitionner.
325
326 Pour des images en niveaux de gris, l'expression générale des éléments $w_{ij}$ de la matrice de similarité $W$ est :
327 \[w_{ij} = 
328 \begin{cases}
329 \mathrm{e}^{\|v_i-v_j\|^2/\sigma_v^2}\mathrm{e}^{\|x_i-x_j\|^2/\sigma_x^2} & \text{si $\|x_i-x_j\|<r$}\\
330 0 & \text{sinon}
331 \end{cases}
332 \]
333 On construit également la matrice de connectivité $D$, diagonale et dont les éléments sont :
334 \[d_{i} = \displaystyle\sum_jw_{ij}\]
335
336 Une famille de méthodes, inspirée par le \textit{graphe optimal} de Wu et Leahy \cite{wu1993optimal}, réalise le partitionnement sur la base des valeurs propres $\lambda_k$ et vecteurs propres $Y_k$ du système 
337 \[\left(D-W)\right)Y=\lambda DY \]
338 Certains algorithmes proposés plus récemment s'inscrivent dans cette veine \cite{wang2001image,wang2003image,felzenszwalb2004efficient,shi2000normalized}, avec comme principal point faible, une difficulté  à trouver un compromis acceptable entre identification de structures globales et préservation des éléments de détails. Cela se traduit dans la pratique par un ensemble de paramètres à régler pour chaque type de segmentation à effectuer.
339
340 La figure \ref{fig-graph-cochon} montre un exemple de l'application de l'algorithme \textit{normalized cuts} décrit dans \cite{shi2000normalized} et implémenté par Cour, Yu et Shi en 2004. Cette implémentation utilise des valeurs pré-établies des paramètres de calcul de la matrice de similarité produisant de bonnes segmentations de sujets dans les images naturelles, mais requiert de prédéterminer le nombre de segments. Les images de la figure représentent les résultats obtenus avec un nombre de segments variant de 2 à 5 et montrent qu'il est difficile de trouver un compromis acceptable. De plus, les temps d'exécution peuvent devenir très rapidement prohibitifs, même avec des implémentations plus optimisées. Les résultats de la figure \ref{fig-graph-cochon} ont été obtenus en 1.5~s environ (Matlab R2010 sur CPU intel core i5-2520M \@ 2.50GHz - linux 3.2.0) 
341 \begin{figure}
342   \centering
343   \subfigure[$s = 2$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_2seg.png}}
344   \subfigure[$s = 3$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_3seg.png}}
345   \subfigure[$s = 4$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_4seg.png}}
346   \subfigure[$s = 5$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_5seg.png}}
347   \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par simplification de graphe de type \textit{Normalized cut} pour un nombre $s$ de segments variant de 2 à 5.}
348 \label{fig-graph-cochon}
349 \end{figure}
350
351 Un autre procédé de partitionnement de graphe, reposant sur le théorème dit du \textit{maximum flow-minimum cut} énoncé par Ford et Fulkerson \cite{ford1955simple} a fait l'objet de beaucoup de travaux, dont les résultats sont comparés dans \cite{boykov2004experimental,chandran2009computational}. 
352 Ce procédé est mis en \oe uvre avec de bons résultats dans plusieurs algorithmes, comme le \textit{push-relabel} \cite{cherkassky1997implementing} ou le \textit{pseudoflow} \cite{hochbaum2013simplifications} qui semble aujourd'hui le plus performant.
353
354 \subsection{kernel-means, mean-shift et apparentés}
355 Parallèlement à la réduction de graphes, d'autres approches ont donné naissance à une multitude de variantes tournées vers la recherche des moindres carrés. 
356 Il s'agit simplement de minimiser l'erreur quadratique totale, ce qui peut se résumer, pour une image de $N$ pixels, en la détermination du nombre $C$ de segments $\Omega_i$ et leur contenu, de sorte à minimiser l'expression 
357 \[\sum_{i\in[1..C]}\sum_{x_k\in\Omega_i} \left(v_k-\mu_i\right)^2\]  
358 où $\mu_i$ représente la valeur affectée au segment $\Omega_i$, i.e la valeur moyenne des observations $v_k$ sur $\Omega_i$, et $\displaystyle{\bigcup_{i\in[1..C]}\Omega_i=\Omega}$ 
359
360 Cette idée est très intuitive et simple, mais n'a pas souvent de solution explicite, d'autant que le nombre des segments est \textit{a priori} inconnu.
361 Dès 1965, Mac Queen a proposé l'appellation k-means pour cette procédure itérative de regroupement \cite{macqueen1967some} qui débute avec $k$ groupes d'un seul pixel\footnote{Dans son article, MacQueen ne parle pas de pixel mais de point. En effet, la méthode décrite ne visait pas à segmenter des images, mais des données de natures diverses.}
362 pris au hasard, puis d'ajouter chaque point au groupe dont la moyenne est la plus proche de la valeur du point à ajouter. La moyenne du groupe nouvellement agrandi doit alors être recalculée avant le prochain ajout.
363 Cette implémentation est extrêmement simple à mettre en \oe uvre \footnote{Même si en 1965, rien n'était simple à programmer} mais elle possède de nombreux défaut dont le principal est qu'elle ne converge pas nécessairement vers le regroupement optimal, même si on connait la \og bonne \fg{} valeur de $k$. 
364 Un autre est d'être très dépendant du choix des $k$ éléments initiaux, en nombre et en position.
365
366 Toutefois, vraisemblablement du fait de sa simplicité d'implémentation et de son temps d'exécution rapide, la communauté scientifique s'est beaucoup penchée sur cette méthode pour en compenser les défauts, jusqu'à en faire une des plus employées, en particulier par les statisticiens.
367 On compte aussi beaucoup de variantes telles les \textit{k-centers} \cite{agarwal2002exact} et les \textit{k-médians} \cite{arora1998approximation} qui n'employent pas la moyenne arithmétique comme expression du \og centre \fg{} d'un segment. 
368 Des solutions ont aussi été apportées pour l'estimation de $k$ en employant, par exemple, un critère de vraisemblance pour choisir la meilleure valeur de $k$ dans un intervalle donné \cite{pelleg2000x}.
369 À titre d'illustration et de comparaison, l'image du cochon a été traitée par une implémentation naïve de l'algorithme original des \textit{k-means} en donnant successivement au nombre de segments les valeurs $s=2$ à $s=5$. Les résultats sont reproduits à la figure \ref{fig-kmeans-cochon} et montrent encore une fois l'influence de $s$ sur la segmentation.
370 \begin{figure}
371   \centering
372   \subfigure[$s = 2$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_2seg.png}}
373   \subfigure[$s = 3$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_3seg.png}}
374   \subfigure[$s = 4$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_4seg.png}}
375   \subfigure[$s = 5$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_5seg.png}}
376   \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par algorithme \textit{k-means} pour un nombre $s$ de segments variant de 2 à 5. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments.}
377 \label{fig-kmeans-cochon}
378 \end{figure}
379
380 Dès 1975, Fukunaga et Hostetler \cite{fukunaga1975estimation} avaient décrit un algorithme générique permettant de déterminer le nombre de segments, ou modes, ainsi que les points, ou pixels, qui les composent. Leur algorithme cherche, pour ce faire, à localiser les $k$ positions où le gradient de densité s'annule. 
381 Il utilise à cet effet un voisinage pondéré (ou \textit{kernel}) et détermine le centre de masse des segments en suivant itérativement le gradient de densité dans le voisinage de chaque élément du domaine. Lorsque l'algorithme a convergé, les $k$ segments sont identifiés et contiennent chacun l'ensemble des points qui ont conduit à leurs centres de masse respectifs.
382 Étonnement, malgré ses qualités intrinsèques, cet algorithme du \textit{mean-shift} est resté longtemps sans susciter de grand intérêt, jusqu'à l'étude de Cheng \cite{cheng1995mean} qui en a valorisé les propriétés et établi des liens avec d'autres techniques d'optimisation ou de filtrage, comme la descente/montée de gradient ou le  floutage.
383
384 Comaniciu et Peer en ont alors étendu l'étude et proposé une application à la segmentation utilisant l'espace colorimétrique CIELUV \cite{foley1994introduction} et ont montré qu'elle permettait une meilleure identification des segments de l'image \cite{comaniciu1999mean,comaniciu2002mean}.
385 Une implémentation de la variante proposée par Keselman et Micheli-Tzanakou dans \cite{keselman1998extraction} appliquée à notre image de test, fournit les résultats reproduits à la figure  \ref{fig-meanshift-cochon}. Pour se rapprocher des traitements précédents, nous avons identifié, par essais successifs, les tailles de voisinage conduisant à des nombres de segments identiques à ceux des figures précédentes (de 2 à 5), le volume minimal admis pour un segment étant arbitrairement fixé à 100 pixels. 
386 \begin{figure}
387   \centering
388   \subfigure[$r=100 \Rightarrow s = 2$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r100m100.png}}
389   \subfigure[$r=50 \Rightarrow s = 3$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r50m100.png}}
390 \subfigure[$r=35 \Rightarrow s = 4$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r35m100.png}}
391   \subfigure[$r=25 \Rightarrow s = 5$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r25m100.png}}  
392   \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par algorithme \textit{mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments.}
393 \label{fig-meanshift-cochon}
394 \end{figure}
395
396 Il est à noter que les segmentations basées sur des algorithmes de \textit{clustering} comme ceux que l'on vient de présenter nécessitent le plus souvent une phase supplémentaire de génération des frontières inter-segments et d'affectation de la valeur de chaque segment aux éléments qui le composent. 
397 Par ailleurs, dans les deux cas du \textit{k-means} et du \textit{mean-shift}, chaque itération génère une réduction de la variance (due au moyennage) et on peut donc rapprocher ces techniques de celles de réduction de bruit par minimisation de variance.
398
399 \subsection{Les contours actifs, ou snakes}
400 Contrairement aux précédentes techniques et comme leur nom le laisse deviner, les éléments constitutifs de ces méthodes sont cette fois des \textit{contours} et non plus des \textit{régions}. De fait, ils définissent nativement une segmentation de l'image.
401 Le principe général est de superposer une courbe paramétrique $S$ à l'image, le \textit{snake}, puis de lui appliquer des déformations successives destinées à rapprocher le \textit{snake} des contours de l'objet. Les déformations à appliquer sont guidées par l'évaluation d'une fonction d'énergie $E_{snake}$ prenant en compte :
402 \begin{itemize}
403 \item l'énergie interne $E_{int}$ de la courbe, fonction de son allongement de sa courbure.
404 \item l'énergie externe $E_{ext}$ liée à l'image, fonction de la proximité de la courbe avec les zones de fort gradient et éventuellement une contrainte fixée par l'utilisateur comme des points imposés par exemple.
405 \end{itemize}
406 L'expression générique peut alors s'écrire 
407 \[E_{snake} = E_{int}+E_{ext}\]
408 où 
409 \[E_{int} = \displaystyle\sum_{s\in S} \frac{1}{2}\left(\alpha\left|\frac{\partial x_s}{\partial s}\right|^2
410 +\beta \left|\frac{\partial^2x_s}{\partial s^2}\right|\right)ds\]
411 et 
412 \[E_{ext} = \displaystyle\sum_{s\in S} -\left|\nabla\left[G_{\sigma}(x_s)\ast v_s\right]\right|^2ds\]
413
414 L'objectif de l'algorithme du \textit{snake} est de trouver une courbe $S$ qui minimise l'énergie totale $E_{snake}$. 
415 Ici encore, la résolution du problème revient à minimiser une fonction sous contrainte et les diverses techniques de résolution numérique peuvent s'appliquer comme pour les autres classes d'algorithmes itératifs présentés précédemment. Ici encore, il faut composer avec un nombre de paramètres à régler assez important. Notons également que dans le cas général, les paramètres notés $\alpha$ et $\beta$, que l'on qualifie aussi d'élasticité et de raideur, sont des fonctions de l'abscisse curviligne $s$. La fonction $G_{\sigma}$ est la fonction d'attraction aux forts gradients de l'image. 
416
417 Dans sa version originale proposée par Kass \textit{et al.} en 1988 \cite{KassWT88}, l'algorithme dit du \textit{snake} présente l'intérêt de converger en un nombre d'itérations assez réduit et permet de suivre naturellement une \textit{cible} en mouvement après une convergence initiale à une position donnée, chaque position de convergence fournissant une position initiale pertinente pour la position suivante.
418 Toutefois, il se montre particulièrement sensible à l'état initial de la courbe et requiert souvent de celle-ci qu'elle soit assez proche de l'objet à \og entourer \fg{}, sous peine de se verrouiller dans un minimum local. 
419 La sensibilité au bruit n'est pas non plus très bonne du fait de la formulation locale de l'énergie.  
420 Les \og concavités \fg{} étroites ou présentant un goulot d'étranglement marqué sont par ailleurs mal délimitées.
421 Enfin, la fonction d'énergie étant calculée sur la longueur totale de la courbe, cela pénalise la bonne identification des structures de petite taille vis à vis de la longueur totale de la courbe.
422 La figure \ref{fig-snake-tradi-cochon} illustre ces défauts en montrant quelques états intermédiaires ainsi que le résultat final d'une segmentation réalisée à partir d'un contour  initial circulaire et des paramètres à valeurs constantes et réglés empiriquement, en employant la méthode du \textit{snake} original.
423 On voit que la convergence est assez rapide mais que le contour ainsi déterminé ne \og colle \fg{} pas bien à l'objet que l'on s'attend à isoler.
424 \begin{figure}
425   \centering
426 \subfigure[Les états initial et suivant chacune des trois premières itérations]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_it3.png}}
427 \subfigure[L'état  du contour après la septième itération]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_it7.png}}
428 \subfigure[L'état du contour après la dixième itération]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_it10.png}}
429 \subfigure[L'état du contour après la centième itération. C'est le contour final.]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_result.png}}   
430 \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par algorithme dit du \textit{snake}, dans sa version originale. Les paramètres d'élasticité, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. }
431 \label{fig-snake-tradi-cochon}
432 \end{figure} 
433
434 Il est cependant possible de contrôler la finesse de la segmentation mais au prix de temps de calculs qui peuvent devenir très longs.
435 Parmi les variantes élaborées qui tentent de pallier ces défauts, les plus intéressantes sont :
436 \begin{itemize}
437 \item le \textit{balloon snake}, conçu pour remédier au mauvais suivi des concavités en introduisant une force supplémentaire de pression tendant à \textit{gonfler} le snake jusqu'à ce qu'il rencontre un contour suffisamment marqué. Cela suppose toutefois que l'état initial de la courbe la situe entièrement à l'intérieur de la zone à segmenter. Cette méthode est donc surtout employée dans des applications semi-automatiques où l'utilisateur définit au moins une position et une taille initiales pour la courbe. 
438 \item le \textit{snake} GVF (pour Gradient Vector Flow), dont le but est de permettre qu'une initialisation lointaine de la courbe ne pénalise pas la segmentation. Une carte des lignes de gradient est établie sur tout le domaine de l'image et sert à intégrer une force supplémentaire dans l'énergie totale, qui attire la courbe vers la zone de fort gradient.
439 \item les \textit{level-sets}, dont la particularité est de ne pas employer directement une courbe paramétrique plane mais de définir l'évolution des frontières comme l'évolution temporelle de l'ensemble des points d'élévation nulle d'une surface 3D soumise à un champ de force. 
440 Les propriétés des contours actifs par \textit{level-sets} se sont révélées intéressantes, en particulier la faculté de se disjoindre ou de fusionner, mais les temps de calcul se sont avérés très pénalisants.
441 Après la formulation initiale de Osher et Sethian en 1988 \cite{osher1988fronts}, plusieurs façons de réduire le coût du calcul ont été formulées, dont les plus importantes restent la technique dite \textit{narrow band} \cite{adalsteinsson1994fast} (bande étroite) qui ne calcule à chaque itération que les points dans une bande étroite autour du plan $z=0$ de l'itération courante et celle du \textit{fast marching} \cite{sethian1996fast} qui s'applique dans le cas particulier d'une évolution monotone des fronts.  
442 \item les \textit{snake} orientés régions, qui visent essentiellement à mieux caractériser les zones à segmenter et améliorer la robustesse vis-à-vis du bruit en employant une formulation de l'énergie calculée sur le domaine complet de l'image \cite{cohen1993surface, ronfard1994region}. Les premiers résultats confirment la qualité de cette méthode, mais la nécessité d'effectuer les calculs sur l'image entière générait des temps de traitement prohibitifs jusqu'à ce que Bertaux \textit{et al.} proposent une amélioration algorithmique exacte permettant à nouveau un calcul en 1D, le long de la courbe, moyennant une simple étape initiale générant un certain nombre d'images intégrales \cite{ChesnaudRB99,GallandBR03,GermainR01}. La section \ref{snake-formulation} en donnera une description détaillée. 
443 \end{itemize} 
444 \subsection{Méthodes hybrides}
445 Aujourd'hui, les algorithmes de segmentation les plus performants en termes de qualité emploient des techniques qui tentent de tirer le meilleur parti de plusieurs des méthodes \og historiques \fg{} décrites précédemment.
446 Le meilleur exemple, et le seul que nous citerons, est le détecteur de contour et l'algorithme de segmentation associé proposé par Arbelaez \textit{et al.} en 2010 \cite{arbelaez2011contour}. Les auteurs  construisent des  histogrammes locaux pour générer une matrice de similitude (\textit{affinity matrix}) et appliquent les techniques liées à la théorie des graphes pour réduire la dimension de l'espace de représentation (calcul des valeurs et vecteurs propres). Ils utilisent ensuite une technique adaptée de l'algorithme intitulé \textit{ligne de partage des eaux} pour en regrouper les segments. 
447 Les résultats sont très bons et des implémentations efficaces ont d'ores et déjà été écrites (voir section \ref{sec-seg-hybride}). 
448 %TODO 
449 %peut-être dire deux mots sur le partage des eaux (avec kmeans et meanshift) puisqu'il est employé dans gPb
450
451 \section{Les implémentations des techniques de segmentation sur GPU}
452 La problématique tant étudiée de la segmentation n'a pas échappé à l'engouement des chercheurs pour les processeurs graphiques modernes. Un certain nombre de travaux proposent ainsi des implémentations GPU plus ou moins directes de méthodes de segmentation tirant parti de l'architecture massivement parallèle de ces matériels.
453 La majorité d'entre elles cherche à répondre à des besoins liés à l'imagerie médicale allant de la simple extraction des contours d'un organe, d'une tumeur, etc., à la mesure de leur volume ; le traitement en 3D n'étant dans ce cas pas un choix mais une obligation, justifiant d'autant plus l'emploi des GPU.
454 La nature des tissus et les formes à identifier sont extrêmement variées. Ces images sont souvent très bruitées avec des modèles de bruit qui varient selon l'instrumentation employée. Enfin, le diagnostic médical requérant la plus grande précision possible, aucune solution générique satisfaisante de segmentation n'a encore pu émerger dans ce cadre, laissant place à autant d'implémentations adaptées que de besoins médicaux spécifiques.
455
456 Beaucoup d'algorithmes récents destinés à la segmentation comportent plusieurs phases de calcul et mettent en \oe uvre différents algorithmes réalisant des fonctions élémentaires comme la réduction de bruit ou le calcul d'histogramme.
457 Selon le type de traitement à effectuer sur le GPU, on peut être amené à en concevoir des implémentations parallèles adaptées, ou bien simplement exécuter de multiples instances indépendantes d'une version séquentielle classique du traitement.
458 Dans les deux cas, même si les articles décrivant ces solutions utilisent sans distinction l'expression \og implémentation GPU \fg{}, cela recouvre des réalités et aussi des niveaux de performance souvent très différents.
459
460 \subsection{Calcul d'histogramme}
461 Étant donné que les segmentations par analyse d'histogramme sont aujourd'hui cantonnées à des applications très particulières et que, dans la pratique,  ces traitements sont souvent réalisés par des circuits spécialisés ou programmables de type FPGA, il serait illusoire d'espérer les concurrencer par une solution de type GPU, plus coûteuse, plus volumineuse et vraisemblablement moins robuste.
462
463 Le calcul d'histogramme est cependant utilisé de manière intensive dans certains algorithmes de haut-niveau, en particulier le \textit{level-set} et le \textit{gPb}. À ce titre, il faut citer les travaux de Fluck \textit{et al.} \cite{fluck2006gpu} qui apportent une réponse efficace au calcul d'histogramme sur GPU, en parvenant à conserver les données dans la mémoire du processeur graphique tout au long de la segmentation par level-set qui était leur motivation initiale \cite{lefohn2003interactive}. 
464
465 Les résultats annoncés ont été obtenus sur un GPU GeForce 7900 et proclament calculer en 1,6~ms les deux histogrammes nécessaires ( 64 classes chacun) sur une image de 256$\times$256 pixels en niveau de gris.
466
467 \subsection{Partitionnement de graphe}
468 Le domaine du traitement des graphes est très actif et peut fournir des éléments pour la segmentation comme l'implémentation du \textit{minimum spanning tree} décrite dans \cite{Vineet:2009:FMS:1572769.1572796} qui annonce la construction du minimum spanning tree d'un graphe de 5 millions de n\oe uds et 30 millions de liens en moins d'une seconde. 
469 En raison de l'indépendance des blocs de threads, la parallélisation GPU des opérations sur les graphes n'est pas simple et peu de travaux font état d'implémentations efficaces mettant en \oe uvre ces techniques : parmi eux, l'implémentation GPU de l'algorithme \textit{push-relabel} qui effectue le partitionnement selon l'approche \textit{min cut/max flow} a donné lieu aux trois versions remarquables que nous détaillons ci-dessous. 
470 \begin{enumerate}
471 \item Dans \cite{dixit2005gpu}  une approche assez directe est mise en \oe uvre et parvient à \textit{binariser} une image de 1~MP en 29~ms (GeForce 6800GT).
472 \item Les auteurs de \cite{4563095} remarquent qu'après un nombre réduit d'itérations, très peu de n\oe uds changent de segment. En conséquence, certains blocs sont activés sans avoir de traitement à effectuer, ce qui retarde le traitement éventuel des blocs en attente. Pour réduire les effets de ce comportement, un indicateur d'activité est calculé à chaque itération et pour chaque bloc, en se basant sur le nombre de changements de segment qui vient d'y être effectué. À l'itération suivante, seuls les blocs considérés comme \textit{probablement} actifs seront activés, réduisant ainsi la latence globale. Un reparamétrage dynamique du graphe après chaque itération est également effectué selon la méthode décrite par Kohli et Torr \cite{kohli2007dynamic}. Ces optimisations permettent d'atteindre un débit d'environ 30 images de 0.3~MP par seconde sur GTX280, ce qui représente un bond en avant en termes de performance. 
473 \item Enfin, Stitch a proposé dans \cite{graphcutscuda} des optimisations plus étroitement liées à l'architecture des GPUs Nvidia en faisant qu'un même thread mette à jour plusieurs liens du graphe et aussi en compactant la représentation mémoire des indicateurs de changement de segment grâce à l'emploi d'un seul bit par lien, ce qui permet de mémoriser l'état de 32 liens dans une seule variable de type entier. Cela a permis aussi d'accélérer la convergence de l'algorithme, comme la montre la courbe de la figure \ref{fig-graphcutscuda} (tirée de \cite{graphcutscuda}), et d'atteindre les 70 images par seconde dans les mêmes conditions que précédemment (sur C1060).
474 \end{enumerate}
475
476 \begin{figure}
477   \centering
478   \includegraphics[width=\linewidth]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/graphcutscuda_stitch.png}
479 \caption{Évolution du nombre de pixels actifs pour les itération successives de l'implémentation  de l'algorithme push-relabel de \cite{graphcutscuda}. Les petites images montrent la localisation des pixels actifs après chaque itération, en blanc.}
480 \label{fig-graphcutscuda}
481 \end{figure}
482
483 \subsection{K-means, mean-shift et apparentés}
484 La popularité de l'algorithme des \textit{k-means} a induit des tentatives de portage sur GPU dont \cite{che2008performance} qui a implémenté de manière directe l'étiquetage des éléments ainsi qu'une réduction partielle, par bloc,  pour la mise à jour des centres ; la réduction finale étant réalisée par le CPU. Cette solution conduit à un transfert des données à chaque itération et ne permet pas d'atteindre des performances élevées. Le temps annoncé pour l'exécution d'une seule itération sur l'ensemble des 819200 éléments de la base de test KDD-Cup-99 \cite{kddcup99} comportant 23 segments s'élève à 200~ms. Qui plus est, cette durée n'inclue ni la réduction ni les transferts, l'accélération revendiquée semble alors très discutable.
485
486 Dans \cite{5170921}, l'ensemble des tâches d'étiquetage et de mise à jour des centres est réalisé sur le GPU. L'étape de réorganisation des données est exécutée sur le CPU, mais s'avère moins pénalisante que dans la solution précédente,  car elle permet de présenter au GPU des données réorganisées pour l'exécution parallèle de la mise à jour des centres (opération de réduction). Les temps d'exécution par itération sont sensiblement les mêmes que pour \cite{che2008performance} mais ils incluent cette fois l'ensemble des calculs (hors transferts). Les auteurs fournissent aussi des mesures des temps d'exécution à convergence, qui atteignent la vingtaine de secondes pour le même ensemble de test.
487
488 La plus convaincante des implémentations de \textit{k-means} reste à notre connaissance celle décrite dans \cite{kmeansgpuopengl}  où la totalité du traitement est effectuée sur le GPU, moyennant l'emploi d'une texture par segment de données. Les mesures ont montré que cette multiplication du nombre des textures ne constituait pas un facteur de perte de performance, tout du moins jusqu'aux limites des tests, conduits avec un maximum de 32 segments dans des ensembles de 1 million d'éléments. Sur GPU GeForce 8500GT, les temps d'exécution obtenus dans ces conditions sont de 13.8~ms par itération, avec une dépendance très réduite vis-à-vis du nombre de segments.
489
490 Un algorithme de \textit{mean-shift}  est mis en \oe uvre dans des travaux à orientation non médicale pour la poursuite de cibles dans des séquences vidéo \cite{li2009mean}. L'accélération obtenue par rapport aux implémentations séquentielles existantes n'est que d'un facteur 2. La solution présentée effectue préalablement une réduction de l'espace colorimétrique via un regroupement par la méthode \textit{k-means}, utilisée dans une version séquentielle. Un gain potentiel de performance pourrait être apporté en employant une implémentation GPU du \textit{k-means}, mais serait toutefois limité en raison des itérations nécessaires plus nombreuses pour le traitement \textit{mean-shift}. Par ailleurs, l'implémentation proposée fait un usage intensif de la mémoire partagée et se heurte à sa limite de 16~Ko par bloc, obligeant à réduire la taille des blocs à l'exécution et avec eux, le parallélisme et vraisemblablement aussi la performance de l'application. On peut malgré tout raisonnablement espérer qu'une telle solution présenterait de meilleures performances sur une carte de type Fermi possédant jusqu'à 48~Ko de mémoire partagée par bloc.
491
492 \textit{Quick shift}, est une solution permettant d'obtenir un résultat en une seule passe (sans itérer) par approximation de l'algorithme mean-shift gaussien (dont les masques de pondération sont des gaussiennes). Proposée initialement dans \cite{vedaldi2008quick}, cette technique a  été parallélisée sur GPU par ses auteurs et décrite dans \cite{fulkerson2012really}. Les performance y sont obtenues grâce à des approximations, parmi lesquelles la restriction des calculs de pondération à des voisinages de rayon $3\sigma$ (écart type de la gaussienne définissant les coefficients du masque), considérant qu'au delà, les valeurs en sont négligeables.
493 On construit ensuite un arbre des liens entre les pixels, en limitant la recherche à une distance maximale de $\sigma$ et en divisant arbitrairement par 2 la dynamique de l'espace colorimétrique. La segmentation est finalement obtenue par simple partionnnement de l'arbre selon un seuil $\tau$.
494
495 Pour s'affranchir de la relative petite taille de la mémoire partagée sans pâtir de la grande latence des accès à la mémoire globale du GPU, les auteurs ont choisi d'associer l'image et l'estimation de densité à des textures et ainsi bénéficier du mécanisme de cache 2D.
496 Les expérimentations ont été menées avec différentes valeurs de $\sigma$ et $\tau$ choisies pour les résultats visuels qu'elles induisent et permettent de segmenter une image couleur de 1~MP en environ 1~s avec $\tau=10$ et $\sigma=6$. Toutefois, des valeurs plus petites, requérant moins de calculs, permettent des temps d'exécution beaucoup plus courts. Les courbes présentées permettent d'envisager, pour $\tau=4$ et $\sigma=2$, une réduction par 30 du temps d'exécution, soit environ 33~ms. Une version améliorée récemment, dans laquelle les positions des centres sont stockées en registres, permet selon les auteurs, de diviser encore par 2 les temps d'exécution pour atteindre une segmentation en environ 16.5~ms.
497 La figure \ref{fig-quickshift-yo}, tirée de \cite{fulkerson2012really}, présente quelques segmentations effectuées avec des valeurs différentes, permettant ainsi de juger des effets des variations des paramètres $\tau$ et $\sigma$.
498
499 \begin{figure}
500   \centering
501 \subfigure[Image originale]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/quick-shift-yo-orig.png}}\quad
502 \subfigure[$\tau=10$ et $\sigma=2$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/quick-shift-yo-s2t10.png}}\quad
503 \subfigure[$\tau=10$ et $\sigma=10$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/quick-shift-yo-s10t10.png}}\quad
504 \subfigure[$\tau=20$ et $\sigma=10$]{\includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/quick-shift-yo-s10t20.png}}\quad
505 \caption{Segmentation d'une image couleur de 512$\times$512 pixels par l'implémentation GPU quick-shift de \cite{fulkerson2012really}.}
506 \label{fig-quickshift-yo}
507 \end{figure}
508
509 Récemment, Xiao et Liu ont décrit dans \cite{xiao2010efficient} une implémentation de l'algorithme \textit{mean-shift} qui utilise cette fois une construction de \textit{KD-tree} (arbre binaire à K dimensions) pour réduire l'espace colorimétrique et effectuer rapidement les recherches des plus proches voisins. L'ensemble s'exécute sur le GPU et permet ainsi d'obtenir des résultats beaucoup plus probants puisque les auteurs revendiquent une segmentation d'image couleur de 6.6 millions de pixels en 0.2 secondes. Malheureusement, il n'est pas dit combien de segments comprend l'image et il n'est fait référence qu'à une seule image, dont on déduit qu'il s'agit de l'image de la figure \ref{fig-meanshift-castle}, reproduite afin de montrer les différences avec une implémentation standard du \textit{mean-shift}.
510
511 \begin{figure}
512   \centering
513 \subfigure[Image originale]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/castle-meanshift.png}}\quad
514 \subfigure[Image segmentée par mean-shift standard]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/castle-meanshift-std.png}}\quad
515 \subfigure[Image segmentée par mean-shift kd-tree]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/castle-meanshift-kdtree.png}}
516 \caption{Comparaison des segmentations d'une image couleur de 2256$\times$3008 pixels réalisées par \textit{mean-shift} standard et par le \textit{mean-shift kd tree} de \cite{xiao2010efficient}.}
517 \label{fig-meanshift-castle}
518 \end{figure}
519
520 \subsection{Level set et snakes}
521 Dès 2003, on recense d'importants travaux liés à l'imagerie médicale mettant en \oe uvre des algorithmes \textit{level set} sur GPU. C'est le cas de \cite{lefohn2003inter,lefohn2003interactive} où les auteurs décrivent une solution de visualisation des coupes d'une mesure volumique réalisée par résonance magnétique (IRM) en exploitant pour la première fois le caractère creux du système d'équations à résoudre. Cette variante est nommée \textit{narrow-band} et diffère de la première solution 2D présentée dans \cite{rumpf2001level} qui implémente la version standard des \textit{level set}. En ne transférant au GPU, pour chaque itération, que les petits pavés de données actifs et en les  rangeant de manière contiguë en texture pour optimiser les accès en lecture, les auteurs sont parvenu à effectuer, pour des données volumiques de 256$\times$256$\times$175, entre 3.5 et 70 itérations par seconde, qu'il faut comparer aux 50 itérations par seconde en 2D sur image de 128$^2$ pixels obtenues dans \cite{rumpf2001level}. La limitation principale de cette solution est celle des dimensions maximales admises pour une texture qui était de 2048$\times$2048 pour le GPU ATI Radeon 9800 pro employé (et programmé en openGL, car ni openCL ni CUDA n'étaient encore disponible à l'époque).
522
523 Les autres solutions GPU proposées depuis sont également basées sur la variante \textit{narrow-band} (bande étroite) des \textit{level-set} \cite{lefohn2005streaming,cates2004gist,jeong2009scalable}, mais seule \cite{jeong2009scalable} s'affranchit des transferts CPU/GPU à chaque itération pour déterminer et transférer les pavés actifs. La solution retenue est d'employer les opérations atomiques pour assurer l'accès exclusif à la liste des pavés en mémoire GPU. Cela permet de descendre à 3~ms par itération pour une image de 512$\times$512 pixels.
524
525 L'implémentation la plus performante à ce jour est celle décrite dans \cite{Roberts:2010:WGA:1921479.1921499} qui parvient à des itérations dont la durée varie, sur GTX280,  de 1.8 à 6.5~ms pour des données volumiques de 256$\times$256$\times$256 pixels, issues d'examens IRM, pour une moyenne de 3.2~ms sur les 2200 itérations de l'exemple fourni (cerveau en 7~s, Figure \ref{fig-l7-brain}). Une optimisation poussée y a été effectuée pour rendre l'algorithme efficace, en particulier grâce à  la refonte du code responsable de la détermination des pavés actifs, qui parvient cette fois à déterminer l'ensemble minimal de pavés actifs et à rendre cette détermination efficace sur le GPU en gérant parallèlement plusieurs tampons, chacun associé à une direction particulière en 6-connexité. Une étape de résolution des doublons est ensuite effectuée avant de les compacter de manière contiguë comme cela était déjà fait dans \cite{lefohn2003inter}.Tout cela est réalisé sans recourir à la mémoire partagée qui s'avère complexe, voire impossible, à utiliser efficacement lorsque les éléments à accéder sont très irrégulièrement répartis en mémoire. 
526
527 Ce faisant, les auteurs parviennent à réduire le nombre total cumulé de pavés qu'il est nécessaire de traiter lors des 2200 itérations de la segmentation de l'image d'exemple. Ils ne reste que à 294 millions de pavés en jeu, alors que l'algorithme \textit{narrow-band} standard devait en traiter 4877 millions. Il est à noter que la durée d'exécution d'une itération dans cette variante dépend plus fortement de la proportion de pavés actifs que pour le \textit{narrow-band} standard. Les deux courbes sont globalement affines et se croisent pour une proportion de pavés actifs proche de 10\%.
528 Si l'on considère que malgré les stratégies adoptées, tenir à jour cette liste de pavés représente encore 77\% du temps de calcul, cela peut représenter une piste pour une optimisation supplémentaire qui, bien qu'apparemment superflue pour l'image du cerveau, pourrait se justifier pour d'autres, comme le suggère le temps de segmentation de 16~s nécessaire pour l'image des reins (Figure \ref{fig-l7-reins}) et de l'aorte, aux dimensions comparables.
529
530 \begin{figure}
531   \centering
532 \subfigure[Cerveau 256$\times$256$\times$256 en 7~s]{\label{fig-l7-brain}\includegraphics[height=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/l7-brain7s.png}}\quad
533 \subfigure[Reins et aorte, 256$\times$256$\times$272 en 16~s]{\label{fig-l7-reins}\includegraphics[height=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/l7-reins16s.png}}
534 \caption{Segmentation d'images issues d'examens IRM par la méthode des level set à bande étroite.}
535 \label{fig-l7-narrow}
536 \end{figure}
537
538 Les algorithmes de type \textit{snake}, très coûteux en temps de calcul, pouvaient prétendre à bénéficier largement de la technologie des GPU pour améliorer leurs performances, mais seule la variante paramétrique GVF à été véritablement implémentée de manière spécifique et efficace \cite{snakegvf06, bauer2009segmentation, li2011robust, snakegvfopencl12}. Les variantes de type géométrique restent à ce jour sans implémentation GPU, principalement en raison de l'irrégularité des motifs d'accès à la mémoire.
539
540 Parmi les premières solutions décrites, \cite{snakegvf06} propose une implémentation réalisée en openGL, où les données de gradient sont compactées en texture RVBA de manière à s'affranchir du format 16 bits de la représentation : les deux premiers canaux R et V contiennent les valeurs représentant respectivement les gradients selon $dx$ et $dy$ sous une forme codée par la valeur des 2 autres canaux. 
541 Par ailleurs, une approximation du système linéaire à résoudre est proposée afin de donner une structure bande symétrique à la matrice à inverser, ce qui améliore considérablement l'efficacité des accès aux données au travers du cache.
542
543 \begin{figure}
544   \centering
545   \subfigure[Contour initial]{\label{fig-epaule-init}\includegraphics[height=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/snake-epaule-init-t.png}}\quad
546   \subfigure[Contour final]{\label{fig-epaule-fin}\includegraphics[height=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/snake-epaule-fin-t.png}}
547 \caption{Segmentation d'une image d'épaule en 1024$^2$ pixels issue d'un examen IRM par l'implémentation du snake GVF de \cite{snakegvf06}. Le contour est représenté en rouge et le contour final est obtenu en 11~s. Le tracé initial du contour a été artificiellement épaissi pour le rendre visible à l'échelle de l'impression.}
548 \label{fig-snakegvf}
549 \end{figure}
550
551 Les performances annoncées montrent tout d'abord que l'approximation adoptée n'a qu'un impact extrêmement limité sur le résultat de la segmentation avec un écart radial maximal inférieur à 1.3 pixel par rapport au calcul exact effectué sur CPU. Enfin, la segmentation de l'image d'exemple en 1024$\times$1024 pixels s'effectue en un total de 11~s après l'initialisation manuelle reproduite à la figure \ref{fig-snakegvf}. Cela est annoncé comme presque 30 fois plus rapide que l'implémentation CPU de référence, mais demeure beaucoup trop lent pour un usage interactif.
552
553 Une solution directe employant la transformée de Fourier pour inverser le système à résoudre a été décrite récemment dans  \cite{zheng2012fast}, et programmée en employant la bibliothèque openGL. Les exemples fournis montrent des objets segmentés dans des images d'environ 10000 pixels en une durée de l'ordre de la demi seconde.   
554
555 En adaptant sur GPU une variante du snake GVF dite FD-snake  (pour \textit{Fourier Descriptors}) \cite{li2011robust} permettant une convergence plus rapide et un calcul parallèle beaucoup plus adapté au GPU, Li \textit{et al.} parviennent à suivre les déformations d'un contour en temps réel dans des images issues d'examens échographiques. Un contour de 100 points peut ainsi converger convenablement en à peine 30~ms. Une contribution supplémentaire de cette implémentation est de permettre une initialisation simplifiée et semi-automatique du contour. 
556
557 La plus aboutie des implémentations actuelles du snake GVF est celle présentée par Smistad \textit{et al.} dans \cite{snakegvfopencl12} où les auteurs ont concentré leur effort sur l'optimisation des accès mémoire lors du calcul du GVF. Ils ont comparé 8 combinaisons possibles impliquant l'emploi des mémoires partagée et de texture ainsi que la représentation des nombres selon le format classique 32 bits ou selon un format compressé sur 16 bits. Il en ressort que l'association la plus performante est celle des textures et du format de données sur 16 bits.
558 Les performances sont alors nettement en hausse avec des segmentations d'images médicales d'IRM de 512$\times$512 pixels effectuées en 41~ms sur Nvidia C2070 et 28~ms sur ATI 5870 (512 itérations). L'implémentation réalisée en openCL permet d'exécuter le code sur les GPU des deux principaux fabricants.   
559
560 \subsection{Algorithmes hybrides\label{sec-seg-hybride}}
561 Le détecteur de contour \textit{gPb} décrit dans \cite{arbelaez2011contour} et que l'on considère comme la référence actuelle pour la segmentation d'objets et personnages dans des image naturelles, à été implémenté en CUDA par Cantazaro \textit{et al.} et est décrit dans \cite{5459410}. Dans cette implémentation GPU, La qualité des contours extraits est préservée et le temps de traitement est réduit d'un facteur supérieur à 100 par rapport à la version CPU de \cite{arbelaez2011contour} : les contours des images de 0.15~MP de la base de test BSDS \cite{martin2001database} sont ainsi traitées en 2 secondes environ sur GPU C1060.
562 L'apport principal de ces travaux réside dans la solution conçue pour le calcul des histogrammes locaux, qui dans l'algorithme original s'étendaient sur des demi-disques centrés sur chaque pixel. La parallélisation réalisée fait l'approximation de chaque demi-disque en un rectangle de même surface dont un des grands cotés a le centre du disque pour milieu. Les rectangles sont ensuite pivotés par une rotation basée sur la discrétisation de Bresenham \cite{bresenham1965algorithm} pour en aligner les cotés avec les cotés de l'image et pouvoir employer la technique des images cumulées pour calculer rapidement l'histogramme.   
563 La figure \ref{fig-gPb} présente quelques résultats d'extraction de contours.
564 \begin{figure}
565   \centering
566 \includegraphics[height=4cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter2/img/gPb_examples.png}
567 \caption{Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS  \cite{martin2001database}}
568 \label{fig-gPb}
569 \end{figure}
570
571 \section{Conclusion}
572 La présentation que nous venons de faire des principales techniques de filtrage et de segmentation ainsi que des implémentations sur GPU qui leur ont été consacrées nous ont permis de confirmer le fait que, malgré leur orientation grand public et les langages de haut niveau permettant d'accéder rapidement à la programmation GPU, la parallélisation efficace d'un algorithme séquentiel destiné à s'exécuter sur ces processeurs n'est pas triviale. Le modèle et les contraintes de programmation sont très spécifiques et obtenir un code efficace découle nécessairement d'un compromis qui peut parfois être complexe à mettre au point. 
573
574 Ajoutons que les générations successives de GPU conservent certes des caractéristiques communes mais diffèrent suffisamment quant à la distribution des ressources, rendant toute généralisation vaine et faisant qu'un code optimisé pour un modèle donné peut devenir moins rapide avec un modèle plus récent. Prenons l'exemple du nombre maximal de registres utilisables par thread ; il est de 128 sur GPU C1060 contre seulement de 63 pour un C2070. Un code faisant un usage optimisé des registres sur C1060 pourra s'exécuter plus lentement sur C2070. C'est un cas de figure sur lequel nous reviendrons plus en détail dans le chapitre \ref{ch-median} consacré au filtre médian.
575
576 Cet état de fait rend les résultats publiés par les chercheurs souvent délicats à interpréter et plus encore à reproduire lorsque l'on souhaite comparer les performances de nos propres codes avec les références du moment, sauf à disposer d'un panel de cartes GPU représentant toutes les évolutions de l'architecture et ce pour au moins les deux grands fabricants de GPUs que sont ATI et Nvidia.   
577
578 Pour aider les développeurs à allouer les ressources de manière optimale, ou tout du moins estimer le degré d'optimisation de leur code à l'aune de la vitesse d'exécution, Nvidia fournit une feuille de calcul appelée \textit{occupancy calculator} dans laquelle on peut entrer les paramètres d'exécution d'un \textit{kernel} parallèle : nombre de registres utilisés par chaque thread, quantité de mémoire partagée, modèle de GPU, dimensions de la grille. Le tableur retourne alors l'indice de charge (l'\textit{occupancy}) qui traduit le rapport, à chaque instant, entre le nombre de warps actifs et le nombre maximal de warps par SM. L'occupancy se traduit donc par un indice compris entre 0 et 100\% et la recherche de performance semble devoir être la recherche de l'occupancy maximale.
579
580 Toutefois, comme l'a clairement démontré Volkov dans \cite{volkov2010better}, ce paradigme peut aisément être remis en cause et Volkov parvient effectivement à améliorer les performances d'un certain nombre d'exemples génériques dans des conditions de faible valeur d'\textit{occupancy}. 
581 Enfin, nous avons pu constater deux grands modèles d'accès aux données : les algorithmes de filtrage usent quasiment tous de la mémoire partagée comme tampon d'accès aux données de l'image en mémoire globale (ou texture) alors que les algorithmes de segmentation performants s'en affranchissent. La raison en est clairement des motifs d'accès très irréguliers et non contigus pour ces derniers, rendant la gestion efficace de la mémoire partagée délicate et potentiellement si coûteuse qu'elle en devient sans intérêt.
582 Les chapitres présentant nos contributions reviendront sur ces aspects en proposant des solutions pour accroître les performances des algorithmes parallèles.
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604  
605
606
607
608    
609       
610
611
612
613
614
615
616
617
618
619
620
621
622  
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686 %  LocalWords:  reparamétrage pénalisante partionnnement volumique
687 %  LocalWords:  compacter