1 #FIG 3.2 Produced by xfig version 3.2.5b
157 6 7290 4995 7695 6209
158 6 7290 5804 7695 6209
159 2 3 0 1 0 7 100 0 20 0.000 0 0 7 0 0 8
160 7571 5804 7415 5804 7415 6046 7290 6046 7493 6209 7695 6046
163 6 7290 4995 7695 5400
164 2 3 0 1 0 7 100 0 20 0.000 0 0 7 0 0 8
165 7571 4995 7415 4995 7415 5236 7290 5236 7493 5400 7695 5236
169 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
170 3044 6255 11581 6255 11581 6885 3044 6885 3044 6255
171 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
173 2 2 0 2 0 0 50 -1 -1 0.000 0 0 -1 0 0 5
174 3044 4320 11581 4320 11581 4950 3044 4950 3044 4320
175 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
177 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
179 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
181 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
183 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
185 2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
187 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
189 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
191 4 0 0 50 -1 4 12 0.0000 3 195 3570 4365 4680 $\\displaystyle\\sum_{j=bs}^{j=2bs-1}z(i,j)$\001
192 4 0 0 50 -1 4 12 0.0000 3 195 3360 3105 4680 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
193 4 2 -1 50 -1 4 10 0.0000 2 150 270 3780 6615 $0$\001
194 4 0 0 50 -1 4 12 0.0000 3 195 5670 5715 6615 $\\displaystyle\\sum_{k=0}^{k=1}\\sum_{j=k.bs}^{j=(k+1).bs-1}z(i,j)$\001
195 4 0 0 50 -1 4 12 0.0000 3 195 3360 4365 6615 $\\displaystyle\\sum_{j=0}^{j=bs-1}z(i,j)$\001
196 4 1 0 50 -1 4 12 0.0000 0 195 2415 7470 5625 parallel exclusive prefixsum\001
197 4 0 0 50 -1 4 12 0.0000 3 195 4020 10080 4680 $\\displaystyle\\sum_{j=(n-1)bs}^{j=n.bs-1}z(i,j)$\001
198 4 0 0 50 -1 4 12 0.0000 3 195 5895 9630 6615 $\\displaystyle\\sum_{k=0}^{k=(n-1)}\\sum_{j=k.bs}^{j=(k+1)bs-1}z(i,j)$\001
199 4 2 0 50 -1 4 12 0.0000 2 180 2235 2970 4590 vector $V$ of block sums\001
200 4 2 0 50 -1 4 12 0.0000 0 195 1485 2970 4770 in global memory\001
201 4 2 0 50 -1 4 12 0.0000 2 180 2235 2970 6525 vector $V$ of block sums\001
202 4 2 0 50 -1 4 12 0.0000 0 195 1485 2970 6705 in global memory\001