]> AND Private Git Repository - these_gilles.git/blob - THESE/codes/bm3D/BM3D/BM3DSHARP.m
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif finale lnivs + keywords
[these_gilles.git] / THESE / codes / bm3D / BM3D / BM3DSHARP.m
1 function [y_hat] = BM3DSHARP(z, sigma, alpha_sharp, profile, print_to_screen)
2 %
3 %  Joint sharpening and denoising with BM3D. This is implementation of the 
4 %  BM3D-SH3D sharpening method that is developed in:
5 %
6 %  [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Joint image
7 %   sharpening and denoising by 3D transform-domain collaborative filtering," 
8 %   Proc. 2007 Int. TICSP Workshop Spectral Meth. Multirate Signal Process.,
9 %   SMMSP 2007, Moscow, Russia, September 2007.
10 %
11 %  FUNCTION INTERFACE:
12 %
13 %  [ysharp] = BM3DSHARP(z, sigma, alpha_sharp, profile, print_to_screen)
14 %
15 %  The function can work without any of the input arguments, hence they are
16 %  optional!
17 %
18 %  INPUTS (OPTIONAL):
19 %
20 %        1) z (matrix, size MxN)       : Input image (noisy and with poor contrast)
21 %        2) sigma (double)             : Noise (IF ANY noise) standard deviation (signal assumed
22 %                                          in the range [0, 255])
23 %        3) alpha_sharp (double)       : Sharpening parameter (default: 1.5):
24 %                                         (1,inf) -> sharpen
25 %                                          1      -> no sharpening
26 %                                         (0,1)   -> de-sharpen
27 %        4) profile (char vector)      : 'lc' --> fast 
28 %                                        'np' --> normal (default)
29 %        5) print_to_screen (boolean)  : 0 --> do not print output
30 %                                          information (and do not plot figures)
31 %                                        1 --> print figures (default)
32 %
33 %   OUTPUTS:
34 %        1) ysharp (matrix, size MxN)  : Sharpened image (in the range [0,1])
35 %
36 %  BASIC USAGE EXAMPLES:     
37 %     
38 %     sigma = 10;
39 %     z = im2double(imread('cameraman.tif'));
40 %     z = z + (sigma/255)*randn(size(z));
41 %     alpha_sharp = 1.3;
42 %     [ysharp] = BM3DSHARP(z, sigma, alpha_sharp);
43 %
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45 %
46 % Copyright © 2007 Tampere University of Technology. All rights reserved.
47 % This work should only be used for nonprofit purposes.
48 %
49 % AUTHORS:
50 %     Kostadin Dabov (2007), email: kostadin.dabov _at_ tut.fi
51 %
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53
54
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 %%%% In case, an input image z is not provided, then use the filename 
57 %%%%  below to read an original image (might contain path also). Later, 
58 %%%%  artificial AWGN noise is added and this noisy image is processed 
59 %%%%  by the BM3D-SH3D.
60 %%%%
61 if (exist('image_name') ~= 1)
62     image_name = [
63     % 
64     %%%% Grayscale images
65     %     'barco.png'
66     %     'pentagon.tif'
67          'Cameraman256.png'   
68     %     'boat.png'
69     %     'Lena512.png'
70     %     'house.png'
71     %     'barbara.png'
72 ];
73 end
74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
75 %%%%  Quality/complexity trade-off profile selection
76 %%%%
77 %%%%  'np' --> Normal Profile (balanced quality)
78 %%%%  'lc' --> Low Complexity Profile (fast, lower quality)
79 %%%%
80 %%%%  'high' --> High Profile (high quality, not documented in [1])
81 %%%%
82 if (exist('profile') ~= 1)
83     profile         = 'np'; %% default profile
84 end
85
86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87 %%%%  Specify the std. dev. of the corrupting noise
88 %%%%
89 if (exist('sigma') ~= 1),
90     if (exist('z') ~= 1)
91         sigma = 20; %% default standard deviation of the AWGN
92     else
93         fprintf('Please specify value for the s.t.d. "sigma"\n');
94         y_hat = 0;
95         return;
96     end
97 end
98     
99 if (exist('alpha_sharp') ~= 1)
100     alpha_sharp = 3/2;
101 end
102
103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
104 %%%% Following are the parameters for the Normal Profile.
105 %%%%
106
107 %%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'):
108 transform_2D_HT_name     = 'bior1.5'; %% transform used for the HT filt. of size N1 x N1
109 transform_3rd_dim_name   = 'haar';    %% transform used in the 3-rd dim, the same for HT and Wiener filt.
110
111 %%%% Hard-thresholding (HT) parameters:
112 N1                  = 8;   %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering
113 Nstep               = 3;   %% sliding step to process every next reference block
114 N2                  = 16;  %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array)
115 Ns                  = 39;  %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd
116 tau_match           = 3000;%% threshold for the block-distance (d-distance)
117 lambda_thr2D        = 0;   %% threshold parameter for the coarse initial denoising used in the d-distance measure
118 lambda_thr3D        = 2.7; %% threshold parameter for the hard-thresholding in 3D transform domain
119 beta                = 2.0; %% parameter of the 2D Kaiser window used in the reconstruction
120
121 %%%% Block-matching parameters:
122 stepFS              = 1;  %% step that forces to switch to full-search BM, "1" implies always full-search
123 smallLN             = 'not used in np'; %% if stepFS > 1, then this specifies the size of the small local search neighb.
124 thrToIncStep        = 8;  %% used in the HT filtering to increase the sliding step in uniform regions
125
126 if strcmp(profile, 'lc') == 1,
127
128     Nstep               = 6;
129     Ns                  = 25;
130
131     thrToIncStep        = 3;
132     smallLN             = 3;
133     stepFS              = 6*Nstep;
134
135 end
136
137 if (strcmp(profile, 'vn') == 1) | (sigma > 40),
138
139     transform_2D_HT_name = 'dct'; 
140     
141     N1                  = 12;
142     Nstep               = 4;
143  
144     lambda_thr3D        = 2.8;
145     lambda_thr2D        = 2.0;
146     thrToIncStep        = 3;
147     tau_match           = 5000;
148     
149 end
150
151 decLevel = 0;        %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number)
152 thr_mask = ones(N1); %% N1xN1 mask of threshold scaling coeff. --- by default there is no scaling, however the use of different thresholds for different wavelet decompoistion subbands can be done with this matrix
153
154 if strcmp(profile, 'high') == 1, %% this profile is not documented in [1]
155     
156     decLevel     = 1; 
157     Nstep        = 2;
158     lambda_thr3D = 2.5;
159     vMask = ones(N1,1); vMask((end/4+1):end/2)= 1.01; vMask((end/2+1):end) = 1.07; %% this allows to have different threhsolds for the finest and next-to-the-finest subbands
160     thr_mask = vMask * vMask'; 
161     beta         = 2.5;
162     beta_wiener  = 1.5;
163     
164 end
165
166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
168 %%%% Note: touch below this point only if you know what you are doing!
169 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
170
171 %%% Check whether to dump information to the screen or remain silent
172 dump_output_information = 1;
173 if (exist('print_to_screen') == 1) & (print_to_screen == 0),
174     dump_output_information = 0;
175 end
176
177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
178 %%%% Create transform matrices, etc.
179 %%%%
180 [Tfor, Tinv]   = getTransfMatrix(N1, transform_2D_HT_name, decLevel);     %% get (normalized) forward and inverse transform matrices
181
182 if (strcmp(transform_3rd_dim_name, 'haar') == 1) | (strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1),
183     %%% If Haar is used in the 3-rd dimension, then a fast internal transform is used, thus no need to generate transform
184     %%% matrices.
185     hadper_trans_single_den         = {};
186     inverse_hadper_trans_single_den = {};
187 else
188     %%% Create transform matrices. The transforms are later applied by
189     %%% matrix-vector multiplication for the 1D case.
190     for hpow = 0:ceil(log2(max(N2,N2_wiener))),
191         h = 2^hpow;
192         [Tfor3rd, Tinv3rd]   = getTransfMatrix(h, transform_3rd_dim_name, 0);
193         hadper_trans_single_den{h}         = single(Tfor3rd);
194         inverse_hadper_trans_single_den{h} = single(Tinv3rd');
195     end
196 end
197
198 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
199 %%%% 2D Kaiser windows used in the aggregation of block-wise estimates
200 %%%%
201 if beta==2 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default
202     Wwin2D = [ 0.1924    0.2989    0.3846    0.4325    0.4325    0.3846    0.2989    0.1924;
203         0.2989    0.4642    0.5974    0.6717    0.6717    0.5974    0.4642    0.2989;
204         0.3846    0.5974    0.7688    0.8644    0.8644    0.7688    0.5974    0.3846;
205         0.4325    0.6717    0.8644    0.9718    0.9718    0.8644    0.6717    0.4325;
206         0.4325    0.6717    0.8644    0.9718    0.9718    0.8644    0.6717    0.4325;
207         0.3846    0.5974    0.7688    0.8644    0.8644    0.7688    0.5974    0.3846;
208         0.2989    0.4642    0.5974    0.6717    0.6717    0.5974    0.4642    0.2989;
209         0.1924    0.2989    0.3846    0.4325    0.4325    0.3846    0.2989    0.1924];
210 else
211     Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part
212 end
213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
214 %%%% If needed, read images, generate noise, or scale the images to the 
215 %%%% [0,1] interval
216 %%%%
217 if (exist('z') ~= 1)
218     y        = im2double(imread(image_name));  %% read a noise-free image and put in intensity range [0,1]
219     randn('seed', 0);                          %% generate seed
220     z        = y + (sigma/255)*randn(size(y)); %% create a noisy image
221 else  % external images
222     
223     image_name = 'External image';
224     
225     % convert z to double precision if needed
226     z = double(z);
227     
228     % if z's range is [0, 255], then convert to [0, 1]
229     if (max(z(:)) > 10), % a naive check for intensity range
230         z = z / 255;
231     end
232     
233 end
234
235 if (size(z,3) ~= 1),
236     error('BM3D-SH3D accepts only grayscale 2D images.');
237 end
238
239 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
240 %%% Print image information to the screen
241 %%%%
242 if dump_output_information == 1,
243     fprintf('Image: %s (%dx%d), sigma: %.1f\n', image_name, size(z,1), size(z,2), sigma);
244 end
245
246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
247 %%%% Apply the filtering MEX-subroutine
248 %%%%
249 tic;
250 y_hat = bm3d_thr_sharpen_var(z, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,...
251          lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, (sigma/255), thrToIncStep, single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(thr_mask), Wwin2D, smallLN, stepFS, 1/alpha_sharp );
252 estimate_elapsed_time = toc;
253
254 if dump_output_information == 1,
255     fprintf('SHARPENING COMPLETED (total time: %.1f sec)\n', ...
256         estimate_elapsed_time);
257     imshow(z); figure, imshow(double(y_hat));
258 end
259
260 return;
261
262
263
264 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
266 % Some auxiliary functions 
267 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
268 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
269
270
271
272 function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
273 %
274 % Create forward and inverse transform matrices, which allow for perfect
275 % reconstruction. The forward transform matrix is normalized so that the 
276 % l2-norm of each basis element is 1.
277 %
278 % [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
279 %
280 %  INPUTS:
281 %
282 %   N               --> Size of the transform (for wavelets, must be 2^K)
283 %
284 %   transform_type  --> 'dct', 'dst', 'hadamard', or anything that is 
285 %                       listed by 'help wfilters' (bi-orthogonal wavelets)
286 %                       'DCrand' -- an orthonormal transform with a DC and all
287 %                       the other basis elements of random nature
288 %
289 %   dec_levels      --> If a wavelet transform is generated, this is the
290 %                       desired decomposition level. Must be in the
291 %                       range [0, log2(N)-1], where "0" implies
292 %                       full decomposition.
293 %
294 %  OUTPUTS:
295 %
296 %   Tforward        --> (N x N) Forward transform matrix
297 %
298 %   Tinverse        --> (N x N) Inverse transform matrix
299 %
300
301 if exist('dec_levels') ~= 1,
302     dec_levels = 0;
303 end
304
305 if N == 1,
306     Tforward = 1;
307 elseif strcmp(transform_type, 'hadamard') == 1,
308     Tforward    = hadamard(N);
309 elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it
310     Tforward =  [ 0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274;
311        0.219417649252501   0.449283757993216   0.449283757993216   0.219417649252501  -0.219417649252501  -0.449283757993216  -0.449283757993216  -0.219417649252501;
312        0.569359398342846   0.402347308162278  -0.402347308162278  -0.569359398342846  -0.083506045090284   0.083506045090284  -0.083506045090284   0.083506045090284;
313       -0.083506045090284   0.083506045090284  -0.083506045090284   0.083506045090284   0.569359398342846   0.402347308162278  -0.402347308162278  -0.569359398342846;
314        0.707106781186547  -0.707106781186547                   0                   0                   0                   0                   0                   0;
315                        0                   0   0.707106781186547  -0.707106781186547                   0                   0                   0                   0;
316                        0                   0                   0                   0   0.707106781186547  -0.707106781186547                   0                   0;
317                        0                   0                   0                   0                   0                   0   0.707106781186547  -0.707106781186547];   
318 elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it
319     Tforward = [ 0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274;
320        0.490392640201615   0.415734806151273   0.277785116509801   0.097545161008064  -0.097545161008064  -0.277785116509801  -0.415734806151273  -0.490392640201615;
321        0.461939766255643   0.191341716182545  -0.191341716182545  -0.461939766255643  -0.461939766255643  -0.191341716182545   0.191341716182545   0.461939766255643;
322        0.415734806151273  -0.097545161008064  -0.490392640201615  -0.277785116509801   0.277785116509801   0.490392640201615   0.097545161008064  -0.415734806151273;
323        0.353553390593274  -0.353553390593274  -0.353553390593274   0.353553390593274   0.353553390593274  -0.353553390593274  -0.353553390593274   0.353553390593274;
324        0.277785116509801  -0.490392640201615   0.097545161008064   0.415734806151273  -0.415734806151273  -0.097545161008064   0.490392640201615  -0.277785116509801;
325        0.191341716182545  -0.461939766255643   0.461939766255643  -0.191341716182545  -0.191341716182545   0.461939766255643  -0.461939766255643   0.191341716182545;
326        0.097545161008064  -0.277785116509801   0.415734806151273  -0.490392640201615   0.490392640201615  -0.415734806151273   0.277785116509801  -0.097545161008064];
327 elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it
328     Tforward = [ 0.161229841765317   0.303012985114696   0.408248290463863   0.464242826880013   0.464242826880013   0.408248290463863   0.303012985114696   0.161229841765317;
329        0.303012985114696   0.464242826880013   0.408248290463863   0.161229841765317  -0.161229841765317  -0.408248290463863  -0.464242826880013  -0.303012985114696;
330        0.408248290463863   0.408248290463863                   0  -0.408248290463863  -0.408248290463863                   0   0.408248290463863   0.408248290463863;
331        0.464242826880013   0.161229841765317  -0.408248290463863  -0.303012985114696   0.303012985114696   0.408248290463863  -0.161229841765317  -0.464242826880013;
332        0.464242826880013  -0.161229841765317  -0.408248290463863   0.303012985114696   0.303012985114696  -0.408248290463863  -0.161229841765317   0.464242826880013;
333        0.408248290463863  -0.408248290463863                   0   0.408248290463863  -0.408248290463863                   0   0.408248290463863  -0.408248290463863;
334        0.303012985114696  -0.464242826880013   0.408248290463863  -0.161229841765317  -0.161229841765317   0.408248290463863  -0.464242826880013   0.303012985114696;
335        0.161229841765317  -0.303012985114696   0.408248290463863  -0.464242826880013   0.464242826880013  -0.408248290463863   0.303012985114696  -0.161229841765317];
336 elseif strcmp(transform_type, 'dct') == 1,
337     Tforward    = dct(eye(N));
338 elseif strcmp(transform_type, 'dst') == 1,
339     Tforward    = dst(eye(N));
340 elseif strcmp(transform_type, 'DCrand') == 1,
341     x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x); 
342     if (Q(1) < 0), 
343         Q = -Q; 
344     end;
345     Tforward = Q';
346 else %% a wavelet decomposition supported by 'wavedec'
347     %%% Set periodic boundary conditions, to preserve bi-orthogonality
348     dwtmode('per','nodisp');  
349     
350     Tforward = zeros(N,N);
351     for i = 1:N
352         Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type);  %% construct transform matrix
353     end
354 end
355
356 %%% Normalize the basis elements
357 Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))'; 
358
359 %%% Compute the inverse transform matrix
360 Tinverse = inv(Tforward);
361
362 return;
363