]> AND Private Git Repository - these_gilles.git/blob - THESE/codes/bm3D/BM3D/CVBM3D.m
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
final rapporteurs ?
[these_gilles.git] / THESE / codes / bm3D / BM3D / CVBM3D.m
1 function [Xdenoised] = CVBM3D(Xnoisy, sigma, Xorig)
2 %  CVBM3D denoising of RGB videos corrupted with AWGN.
3 %
4 %
5 %  [Xdenoised] = CVBM3D(Xnoisy, sigma, Xorig)
6 %
7 %  INPUTS:
8 %
9 %   1)  Xnoisy --> Either a filename of a noisy AVI RGB uncompressed video (e.g. 'SMg20.avi') 
10 %                  or a 4-D matrix of dimensions (M x N x 3 x NumberOfFrames)
11 %                  The intensity range is [0,255]!
12 %   2)  Sigma -->  Noise standard deviation (assumed intensity range is [0,255])
13 %
14 %   3)  Xorig     (optional parameter) --> Filename of the original video
15 %
16 %  OUTPUT: .avi files are written to the current matlab folder
17 %
18 %   1) Xdenoised --> A 4-D matrix with the denoised RGB-video
19 %
20 %  USAGE EXAMPLES:
21 %   1) To denoise a video:
22 %      CVBM3D('SMg20.avi', 20)
23 %
24 %   2) To denoise a video and print PSNR:
25 %      CVBM3D('SMg20.avi', 20, 'SM.avi')
26 %
27 %   1) To denoise a 4-D matrix representing a noisy RGB video:
28 %      CVBM3D(X_4D_matrix, 20)
29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 %
31 % Copyright © 2009 Tampere University of Technology. All rights reserved.
32 % This work should only be used for nonprofit purposes.
33 %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35
36 % If no input argument is provided, then use the internal ones from below:
37 if exist('sigma', 'var') ~= 1,
38     Xnoisy = 'SMg20.avi';  sigma = 20;  ;
39 end
40
41 % Whether or not to print information to the screen
42 dump_information = 1;
43
44 % If the input is a 4-D matrix, then save it as AVI file that is used as
45 % input to the denoising
46 if ischar(Xnoisy) == 0;
47     NumberOfFrames = size(Xnoisy,4);
48
49     if NumberOfFrames <= 1
50         error('The input RGB video should be a 4-D matrix (M x N x 3 x NumberOfFrames)');
51     end
52     avi_filename = sprintf('ExternalMatrix_%.6d.avi', round(rand*50000));
53     if exist(avi_filename, 'file') == 2,
54         delete(avi_filename);
55     end
56     mov = avifile(avi_filename, 'Colormap', gray(256), 'compression', 'None', 'fps', 30);
57     if mean2(Xnoisy) <= 1
58         fprintf('Possible error: the input RGB-videos should be in range [0,255] and not in [0,1]!\n');
59     else
60         for ii = [1:NumberOfFrames],
61             mov = addframe(mov, uint8(Xnoisy(:,:,:,ii)));
62         end        
63     end
64     mov = close(mov);
65     
66     if dump_information == 1
67         fprintf('The input 4-D matrix was written to: %s.\n', avi_filename);
68     end
69
70     clear Xnoisy
71     Xnoisy = avi_filename;
72 end
73
74 % Read some properties of the noisy RGB video
75 noi_avi_file_info = aviinfo(Xnoisy);
76 NumberOfFrames = noi_avi_file_info.NumFrames;
77
78 %%% Read Xorig video --- needed if one wants to compute PSNR and ISNR
79 if exist('Xorig', 'var') == 1,
80     if ischar(Xorig) == 1;    
81         org_avi_file_info = aviinfo(Xorig);
82         mo = aviread(Xorig);
83         Xorig = zeros([size(mo(1).cdata), NumberOfFrames], 'single');
84         for cf = 1:NumberOfFrames
85             Xorig(:,:,:,cf) = single(mo(cf).cdata(:,:,:));
86         end
87         clear mo;
88
89         if (org_avi_file_info.NumFrames == noi_avi_file_info.NumFrames && org_avi_file_info.FramesPerSecond == noi_avi_file_info.FramesPerSecond && ...
90                 org_avi_file_info.Width == noi_avi_file_info.Width && org_avi_file_info.Height == noi_avi_file_info.Height)
91             dump_information = 1;
92         end 
93     else
94         Xorig = single(Xorig);
95         if mean2(Xorig) <= 1
96             fprintf('Possible error: the input RGB-videos should be in range [0,255] and not in [0,1]!\n');
97         end
98
99     end
100 end
101
102 denoiseFrames  = min(9, NumberOfFrames);
103 denoiseFramesW = min(9, NumberOfFrames);
104
105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
106 %%%%  Quality/complexity trade-off
107 %%%%
108 %%%%  'np' --> Normal Profile (balanced quality)
109 %%%%  'lc' --> Low Complexity Profile (fast, lower quality)
110 %%%%
111 if (exist('bm3dProfile') ~= 1)
112     bm3dProfile         = 'np';
113 end
114
115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
116 %%%% Following are the parameters for the Normal Profile.
117 %%%%
118
119 %%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'):
120 transform_2D_HT_name     = 'bior1.5'; %% transform used for the HT filt. of size N1 x N1
121 transform_2D_Wiener_name = 'dct';     %% transform used for the Wiener filt. of size N1_wiener x N1_wiener
122 transform_3rd_dim_name   = 'haar'; %% tranform used in the 3-rd dim, the same for HT and Wiener filt.
123
124 %%%% Step 1: Hard-thresholding (HT) parameters:
125 N1                  = 8;  %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering
126 Nstep               = 5;  %% sliding step to process every next refernece block
127 N2                  = 8;  %% maximum number of similar blocks (maximum size of the 3rd dimension of the 3D groups)
128 Ns                  = 7;  %% length of the side of the search neighborhood for full-search block-matching (BM)
129 Npr                 = 3;  %% length of the side of the motion-adaptive search neighborhood, use din the predictive-search BM
130 tau_match           = 3000; %% threshold for the block distance (d-distance)
131 lambda_thr3D        = 2.7; %% threshold parameter for the hard-thresholding in 3D DFT domain
132 dsub                = 13;  %% a small value subtracted from the distnce of blocks with the same spatial coordinate as the reference one
133 Nb                  = 2;  %% number of blocks to follow in each next frame, used in the predictive-search BM
134 beta                = 2.0; %% the beta parameter of the 2D Kaiser window used in the reconstruction
135
136
137 %%%% Step 2: Wiener filtering parameters:
138 N1_wiener           = 7;
139 Nstep_wiener        = 4;
140 N2_wiener           = 8;
141 Ns_wiener           = 7;
142 Npr_wiener          = 3;
143 tau_match_wiener    = 1000;
144 beta_wiener         = 2.0;
145 dsub_wiener         = 1.5;
146 Nb_wiener           = 2;
147
148 %%%% Block-matching parameters:
149 stepFS              = 1; %% step that firces to switch to full-search BM, "1" implies always full-search
150 stepFSW             = 1;
151 thrToIncStep        = 8;  %% used in the HT filtering to increase the sliding step in uniform regions
152
153
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155 %%%% Following are the parameters for the Low Complexity Profile.
156 %%%%
157 if strcmp(bm3dProfile, 'lc') == 1,
158     lambda_thr3D = 2.8;
159     denoiseFrames  = min(5, NumberOfFrames);
160     denoiseFramesW = min(5, NumberOfFrames);
161     N2_wiener = 4;
162     N2 = 4;
163     Ns = 3;
164     Ns_wiener = 3;
165     Nb = 1;
166     Nb_wiener = 1;
167 end
168
169 if strcmp(bm3dProfile, 'hi') == 1,
170     Nstep        = 3;
171     Nstep_wiener = 3;
172 end
173
174 if sigma > 30,
175     N1_wiener = 8;
176     tau_match    = 4500;
177     tau_match_wiener    = 3000;
178 end
179
180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
182 %%%% Note: touch below this point only if you know what you are doing!
183 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
184 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
185
186
187 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
188 %%%% Create transform matrices, etc.
189 %%%%
190 decLevel                     = 0;    %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number)
191 decLevel3                    = 0;    %% dec. level for the wavelet transform in the 3rd dimension
192
193 [Tfor, Tinv]   = getTransfMatrix(N1, transform_2D_HT_name, decLevel); %% get (normalized) forward and inverse transform matrices
194 [TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name); %% get (normalized) forward and inverse transform matrices
195
196 if (strcmp(transform_3rd_dim_name, 'haar') == 1 || strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1),
197     %%% Fast internal transform is used, no need to generate transform
198     %%% matrices.
199     hadper_trans_single_den         = {};
200     inverse_hadper_trans_single_den = {};
201 else
202     %%% Create transform matrices. The transforms are later computed by
203     %%% matrix multiplication with them
204     for hh = [1 2 4 8 16 32];
205         [Tfor3rd, Tinv3rd]   = getTransfMatrix(hh, transform_3rd_dim_name, decLevel3);
206         hadper_trans_single_den{hh}         = single(Tfor3rd);
207         inverse_hadper_trans_single_den{hh} = single(Tinv3rd');
208     end
209 end
210
211
212 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
213 %%%% 2D Kaiser windows that scale the reconstructed blocks
214 %%%%
215 if beta_wiener==2 & beta==2 & N1_wiener==7 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default
216     Wwin2D = [ 0.1924    0.2989    0.3846    0.4325    0.4325    0.3846    0.2989    0.1924;
217         0.2989    0.4642    0.5974    0.6717    0.6717    0.5974    0.4642    0.2989;
218         0.3846    0.5974    0.7688    0.8644    0.8644    0.7688    0.5974    0.3846;
219         0.4325    0.6717    0.8644    0.9718    0.9718    0.8644    0.6717    0.4325;
220         0.4325    0.6717    0.8644    0.9718    0.9718    0.8644    0.6717    0.4325;
221         0.3846    0.5974    0.7688    0.8644    0.8644    0.7688    0.5974    0.3846;
222         0.2989    0.4642    0.5974    0.6717    0.6717    0.5974    0.4642    0.2989;
223         0.1924    0.2989    0.3846    0.4325    0.4325    0.3846    0.2989    0.1924 ];
224     Wwin2D_wiener = [ 0.1924    0.3151    0.4055    0.4387    0.4055    0.3151    0.1924;
225         0.3151    0.5161    0.6640    0.7184    0.6640    0.5161    0.3151;
226         0.4055    0.6640    0.8544    0.9243    0.8544    0.6640    0.4055;
227         0.4387    0.7184    0.9243    1.0000    0.9243    0.7184    0.4387;
228         0.4055    0.6640    0.8544    0.9243    0.8544    0.6640    0.4055;
229         0.3151    0.5161    0.6640    0.7184    0.6640    0.5161    0.3151;
230         0.1924    0.3151    0.4055    0.4387    0.4055    0.3151    0.1924 ];
231 else
232     Wwin2D           = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part
233     Wwin2D_wiener    = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the aggregation of the Wiener filt. part
234 end
235 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
236 %%%% Read an image, generate noise and add it to the image
237 %%%%
238
239 if dump_information == 1
240     fprintf('Input video: %s, sigma: %.1f\n', Xnoisy, sigma);
241 end
242
243 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244 %%%% Determine unique filenames of intermediate avi files
245 %%%%
246
247 HT_avi_file = sprintf('%s_cvbm3d_step1_0.avi', Xnoisy(1:end-4));
248 Denoised_avi_file = sprintf('%s_cvbm3d_0.avi', Xnoisy(1:end-4));
249 i = 1;
250 while (exist(['./' HT_avi_file], 'file') ~= 0) | (exist(['./' Denoised_avi_file],'file') ~= 0)
251     HT_avi_file = sprintf('%s_cvbm3d_step1_%d.avi', Xnoisy(1:end-4),i);
252     Denoised_avi_file = sprintf('%s_cvbm3d_%d.avi', Xnoisy(1:end-4),i);
253     i = i + 1;
254 end
255
256 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
257 %%%% Initial estimate by hard-thresholding filtering
258 HT_IO = {which(Xnoisy), HT_avi_file};
259
260 tic;
261 bm3d_thr_video_c(HT_IO, hadper_trans_single_den, Nstep, N1, N2, 0,...
262     lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, sigma/255, thrToIncStep,...
263     single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(ones(N1)),...
264     'unused arg', dsub*dsub/255 * (sigma^2 / 255), ones(NumberOfFrames,1), Wwin2D,...
265     (Npr-1)/2, stepFS, denoiseFrames, Nb, 0 );
266 estimate_elapsed_time = toc;
267
268 if dump_information == 1
269 %     mo = aviread(HT_avi_file);
270 %     y_hat = zeros([size(mo(1).cdata(:,:,1)), 3, NumberOfFrames], 'single');
271 %     for cf = 1:NumberOfFrames
272 %         y_hat(:,:,:,cf) = single(mo(cf).cdata(:,:,:))/255;
273 %     end
274 %     clear  mo
275
276 %     PSNR_HT_ESTIMATE = 10*log10(1/mean2((Xorig-y_hat).^2));
277 %     fprintf('HT ESTIMATE, PSNR: %.3f dB\n', PSNR_HT_ESTIMATE);
278 %     clear y_hat;
279      fprintf('STEP1 completed!\n');
280 end
281
282 %%
283 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
284 % %%%% Final estimate by Wiener filtering (using the hard-thresholding
285 % initial estimate)
286
287 lut_ic = ClipComp16b(sigma/255);
288
289 WIE_IO = {which(Xnoisy), HT_avi_file, Denoised_avi_file};
290
291 tic;
292 bm3d_wiener_video_c(WIE_IO, 'unused', hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ...
293     'unused_arg', tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, sigma/255, 'unused arg',...
294     single(TforW), single(TinvW)', inverse_hadper_trans_single_den, 'unused arg', dsub_wiener*dsub_wiener/255*(sigma^2 / 255),...
295     ones(NumberOfFrames,1), Wwin2D_wiener, (Npr_wiener-1)/2, stepFSW, denoiseFramesW, Nb_wiener, 0, lut_ic);
296
297 wiener_elapsed_time = toc;
298
299 if nargout == 1
300     mo = aviread(Denoised_avi_file);
301     Xdenoised = zeros([size(mo(1).cdata(:,:,1)), 3, NumberOfFrames], 'single');
302     for cf = 1:NumberOfFrames
303         Xdenoised(:,:,:,cf) = single(mo(cf).cdata(:,:,:));
304     end
305     clear  mo
306 end
307
308 if dump_information == 1
309     if nargout ~= 1
310         mo = aviread(Denoised_avi_file);
311         Xdenoised = zeros([size(mo(1).cdata(:,:,1)), 3, NumberOfFrames], 'single');
312         for cf = 1:NumberOfFrames
313             Xdenoised(:,:,:,cf) = single(mo(cf).cdata(:,:,:));
314         end
315         clear  mo
316     end
317     
318     PSNR_TEXT='';
319     if exist('Xorig', 'var') == 1
320         PSNR = 10*log10(255*255/mean((Xorig(:)-Xdenoised(:)).^2));
321         PSNR_TEXT=sprintf(' PSNR: %.3f dB,', PSNR);
322         New_Denoised_avi_file = sprintf('%s_PSNR%.2f.avi',Denoised_avi_file(1:end-4),PSNR);
323         movefile(Denoised_avi_file, New_Denoised_avi_file);
324         Denoised_avi_file = New_Denoised_avi_file;
325     end
326
327 %     PSNRs = zeros(NumberOfFrames,1);
328 %     for ii = 1:NumberOfFrames,
329 %         PSNRs(ii) = 10*log10(1/mean2( (Xorig(:,:,:,ii)-Xdenoised(:,:,:,ii)).^2));
330 %         fprintf('Frame: %d, PSNR: %.2f\n', ii, PSNRs(ii));
331 %     end
332     if nargout == 0
333         clear Xdenoised
334     end
335
336     fprintf('FILTERING COMPLETED (frames/sec: %.2f,%s denoised video saved as %s)\n', ...
337         NumberOfFrames/(wiener_elapsed_time + estimate_elapsed_time), PSNR_TEXT, Denoised_avi_file);
338     
339 end
340
341
342 return;
343
344
345 function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
346 %
347 % Create forward and inverse transform matrices, which allow for perfect
348 % reconstruction. The forward transform matrix is normalized so that the 
349 % l2-norm of each basis element is 1.
350 %
351 % [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
352 %
353 %  INPUTS:
354 %
355 %   N               --> Size of the transform (for wavelets, must be 2^K)
356 %
357 %   transform_type  --> 'dct', 'dst', 'hadamard', or anything that is 
358 %                       listed by 'help wfilters' (bi-orthogonal wavelets)
359 %                       'DCrand' -- an orthonormal transform with a DC and all
360 %                       the other basis elements of random nature
361 %
362 %   dec_levels      --> If a wavelet transform is generated, this is the
363 %                       desired decomposition level. Must be in the
364 %                       range [0, log2(N)-1], where "0" implies
365 %                       full decomposition.
366 %
367 %  OUTPUTS:
368 %
369 %   Tforward        --> (N x N) Forward transform matrix
370 %
371 %   Tinverse        --> (N x N) Inverse transform matrix
372 %
373
374 if exist('dec_levels') ~= 1,
375     dec_levels = 0;
376 end
377
378 if N == 1,
379     Tforward = 1;
380 elseif strcmp(transform_type, 'hadamard') == 1,
381     Tforward    = hadamard(N);
382 elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it
383     Tforward =  [ 0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274;
384        0.219417649252501   0.449283757993216   0.449283757993216   0.219417649252501  -0.219417649252501  -0.449283757993216  -0.449283757993216  -0.219417649252501;
385        0.569359398342846   0.402347308162278  -0.402347308162278  -0.569359398342846  -0.083506045090284   0.083506045090284  -0.083506045090284   0.083506045090284;
386       -0.083506045090284   0.083506045090284  -0.083506045090284   0.083506045090284   0.569359398342846   0.402347308162278  -0.402347308162278  -0.569359398342846;
387        0.707106781186547  -0.707106781186547                   0                   0                   0                   0                   0                   0;
388                        0                   0   0.707106781186547  -0.707106781186547                   0                   0                   0                   0;
389                        0                   0                   0                   0   0.707106781186547  -0.707106781186547                   0                   0;
390                        0                   0                   0                   0                   0                   0   0.707106781186547  -0.707106781186547];   
391 elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it
392     Tforward = [ 0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274   0.353553390593274;
393        0.490392640201615   0.415734806151273   0.277785116509801   0.097545161008064  -0.097545161008064  -0.277785116509801  -0.415734806151273  -0.490392640201615;
394        0.461939766255643   0.191341716182545  -0.191341716182545  -0.461939766255643  -0.461939766255643  -0.191341716182545   0.191341716182545   0.461939766255643;
395        0.415734806151273  -0.097545161008064  -0.490392640201615  -0.277785116509801   0.277785116509801   0.490392640201615   0.097545161008064  -0.415734806151273;
396        0.353553390593274  -0.353553390593274  -0.353553390593274   0.353553390593274   0.353553390593274  -0.353553390593274  -0.353553390593274   0.353553390593274;
397        0.277785116509801  -0.490392640201615   0.097545161008064   0.415734806151273  -0.415734806151273  -0.097545161008064   0.490392640201615  -0.277785116509801;
398        0.191341716182545  -0.461939766255643   0.461939766255643  -0.191341716182545  -0.191341716182545   0.461939766255643  -0.461939766255643   0.191341716182545;
399        0.097545161008064  -0.277785116509801   0.415734806151273  -0.490392640201615   0.490392640201615  -0.415734806151273   0.277785116509801  -0.097545161008064];
400 elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it
401     Tforward = [ 0.161229841765317   0.303012985114696   0.408248290463863   0.464242826880013   0.464242826880013   0.408248290463863   0.303012985114696   0.161229841765317;
402        0.303012985114696   0.464242826880013   0.408248290463863   0.161229841765317  -0.161229841765317  -0.408248290463863  -0.464242826880013  -0.303012985114696;
403        0.408248290463863   0.408248290463863                   0  -0.408248290463863  -0.408248290463863                   0   0.408248290463863   0.408248290463863;
404        0.464242826880013   0.161229841765317  -0.408248290463863  -0.303012985114696   0.303012985114696   0.408248290463863  -0.161229841765317  -0.464242826880013;
405        0.464242826880013  -0.161229841765317  -0.408248290463863   0.303012985114696   0.303012985114696  -0.408248290463863  -0.161229841765317   0.464242826880013;
406        0.408248290463863  -0.408248290463863                   0   0.408248290463863  -0.408248290463863                   0   0.408248290463863  -0.408248290463863;
407        0.303012985114696  -0.464242826880013   0.408248290463863  -0.161229841765317  -0.161229841765317   0.408248290463863  -0.464242826880013   0.303012985114696;
408        0.161229841765317  -0.303012985114696   0.408248290463863  -0.464242826880013   0.464242826880013  -0.408248290463863   0.303012985114696  -0.161229841765317];
409 elseif (N == 7) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it
410     Tforward =[ 0.377964473009227   0.377964473009227   0.377964473009227   0.377964473009227   0.377964473009227   0.377964473009227   0.377964473009227;
411        0.521120889169602   0.417906505941275   0.231920613924330                   0  -0.231920613924330  -0.417906505941275  -0.521120889169602;
412        0.481588117120063   0.118942442321354  -0.333269317528993  -0.534522483824849  -0.333269317528993   0.118942442321354   0.481588117120063;
413        0.417906505941275  -0.231920613924330  -0.521120889169602                   0   0.521120889169602   0.231920613924330  -0.417906505941275;
414        0.333269317528993  -0.481588117120063  -0.118942442321354   0.534522483824849  -0.118942442321354  -0.481588117120063   0.333269317528993;
415        0.231920613924330  -0.521120889169602   0.417906505941275                   0  -0.417906505941275   0.521120889169602  -0.231920613924330;
416        0.118942442321354  -0.333269317528993   0.481588117120063  -0.534522483824849   0.481588117120063  -0.333269317528993   0.118942442321354];   
417 elseif strcmp(transform_type, 'dct') == 1,
418     Tforward    = dct(eye(N));
419 elseif strcmp(transform_type, 'dst') == 1,
420     Tforward    = dst(eye(N));
421 elseif strcmp(transform_type, 'DCrand') == 1,
422     x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x); 
423     if (Q(1) < 0), 
424         Q = -Q; 
425     end;
426     Tforward = Q';
427 else %% a wavelet decomposition supported by 'wavedec'
428     %%% Set periodic boundary conditions, to preserve bi-orthogonality
429     dwtmode('per','nodisp');  
430     
431     Tforward = zeros(N,N);
432     for i = 1:N
433         Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type);  %% construct transform matrix
434     end
435 end
436
437 %%% Normalize the basis elements
438 Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))'; 
439
440 %%% Compute the inverse transform matrix
441 Tinverse = inv(Tforward);
442
443 return;
444
445