]> AND Private Git Repository - these_gilles.git/blob - DOCS/paper_snake_gpu/snake_gpu_v2.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v1.2 19 décembre
[these_gilles.git] / DOCS / paper_snake_gpu / snake_gpu_v2.tex
1
2 %% bare_conf.tex
3 %% V1.3
4 %% 2007/01/11
5 %% by Michael Shell
6 %% See:
7 %% http://www.michaelshell.org/
8 %% for current contact information.
9 %%
10 %% This is a skeleton file demonstrating the use of IEEEtran.cls
11 %% (requires IEEEtran.cls version 1.7 or later) with an IEEE conference paper.
12 %%
13 %% Support sites:
14 %% http://www.michaelshell.org/tex/ieeetran/
15 %% http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/
16 %% and
17 %% http://www.ieee.org/
18
19 %%*************************************************************************
20 %% Legal Notice:
21 %% This code is offered as-is without any warranty either expressed or
22 %% implied; without even the implied warranty of MERCHANTABILITY or
23 %% FITNESS FOR A PARTICULAR PURPOSE! 
24 %% User assumes all risk.
25 %% In no event shall IEEE or any contributor to this code be liable for
26 %% any damages or losses, including, but not limited to, incidental,
27 %% consequential, or any other damages, resulting from the use or misuse
28 %% of any information contained here.
29 %%
30 %% All comments are the opinions of their respective authors and are not
31 %% necessarily endorsed by the IEEE.
32 %%
33 %% This work is distributed under the LaTeX Project Public License (LPPL)
34 %% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
35 %% distributed and modified. A copy of the LPPL, version 1.3, is included
36 %% in the base LaTeX documentation of all distributions of LaTeX released
37 %% 2003/12/01 or later.
38
39
40 %% Retain all contribution notices and credits.
41 %% ** Modified files should be clearly indicated as such, including  **
42 %% ** renaming them and changing author support contact information. **
43 %%
44 %% File list of work: IEEEtran.cls, IEEEtran_HOWTO.pdf, bare_adv.tex,
45 %%                    bare_conf.tex, bare_jrnl.tex, bare_jrnl_compsoc.tex
46 %%*************************************************************************
47
48 % *** Authors should verify (and, if needed, correct) their LaTeX system  ***
49 % *** with the testflow diagnostic prior to trusting their LaTeX platform ***
50 % *** with production work. IEEE's font choices can trigger bugs that do  ***
51 % *** not appear when using other class files.                            ***
52 % The testflow support page is at:
53 % http://www.michaelshell.org/tex/testflow/
54
55
56
57 % Note that the a4paper option is mainly intended so that authors in
58 % countries using A4 can easily print to A4 and see how their papers will
59 % look in print - the typesetting of the document will not typically be
60 % affected with changes in paper size (but the bottom and side margins will).
61 % Use the testflow package mentioned above to verify correct handling of
62 % both paper sizes by the user's LaTeX system.
63 %
64 % Also note that the "draftcls" or "draftclsnofoot", not "draft", option
65 % should be used if it is desired that the figures are to be displayed in
66 % draft mode.
67 %
68 \documentclass[10pt, conference, compsocconf]{IEEEtran}
69 % Add the compsocconf option for Computer Society conferences.
70 %
71 % If IEEEtran.cls has not been installed into the LaTeX system files,
72 % manually specify the path to it like:
73 % \documentclass[conference]{../sty/IEEEtran}
74
75
76 %  \usepackage[latin1]{inputenc}
77 %  \usepackage[cyr]{aeguill}
78 %  \usepackage[francais]{babel}
79
80
81 % Some very useful LaTeX packages include:
82 % (uncomment the ones you want to load)
83
84
85 % *** MISC UTILITY PACKAGES ***
86 %
87 %\usepackage{ifpdf}
88 % Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
89 % compilation based on whether the output is pdf or dvi.
90 % usage:
91 % \ifpdf
92 %   % pdf code
93 % \else
94 %   % dvi code
95 % \fi
96 % The latest version of ifpdf.sty can be obtained from:
97 % http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/
98 % Also, note that IEEEtran.cls V1.7 and later provides a builtin
99 % \ifCLASSINFOpdf conditional that works the same way.
100 % When switching from latex to pdflatex and vice-versa, the compiler may
101 % have to be run twice to clear warning/error messages.
102
103
104
105
106
107
108 % *** CITATION PACKAGES ***
109 %
110 \usepackage{cite}
111 % cite.sty was written by Donald Arseneau
112 % V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
113 % \cite{} output to follow that of IEEE. Loading the cite package will
114 % result in citation numbers being automatically sorted and properly
115 % "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
116 % cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
117 % \cite will automatically add leading space, if needed. Use cite.sty's
118 % noadjust option (cite.sty V3.8 and later) if you want to turn this off.
119 % cite.sty is already installed on most LaTeX systems. Be sure and use
120 % version 4.0 (2003-05-27) and later if using hyperref.sty. cite.sty does
121 % not currently provide for hyperlinked citations.
122 % The latest version can be obtained at:
123 % http://www.ctan.org/tex-archive/macros/latex/contrib/cite/
124 % The documentation is contained in the cite.sty file itself.
125
126
127
128
129
130
131 % *** GRAPHICS RELATED PACKAGES ***
132 %
133 \ifCLASSINFOpdf
134   \usepackage[pdftex]{graphicx,color}
135   % declare the path(s) where your graphic files are
136   \graphicspath{{img/}}
137   % and their extensions so you won't have to specify these with
138   % every instance of \includegraphics
139   \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
140 \else
141   % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
142   % will default to the driver specified in the system graphics.cfg if no
143   % driver is specified.
144   % \usepackage[dvips]{graphicx}
145   % declare the path(s) where your graphic files are
146   % \graphicspath{{../eps/}}
147   % and their extensions so you won't have to specify these with
148   % every instance of \includegraphics
149   % \DeclareGraphicsExtensions{.eps}
150 \fi
151 % graphicx was written by David Carlisle and Sebastian Rahtz. It is
152 % required if you want graphics, photos, etc. graphicx.sty is already
153 % installed on most LaTeX systems. The latest version and documentation can
154 % be obtained at: 
155 % http://www.ctan.org/tex-archive/macros/latex/required/graphics/
156 % Another good source of documentation is "Using Imported Graphics in
157 % LaTeX2e" by Keith Reckdahl which can be found as epslatex.ps or
158 % epslatex.pdf at: http://www.ctan.org/tex-archive/info/
159 %
160 % latex, and pdflatex in dvi mode, support graphics in encapsulated
161 % postscript (.eps) format. pdflatex in pdf mode supports graphics
162 % in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
163 % that all non-photo figures use a vector format (.eps, .pdf, .mps) and
164 % not a bitmapped formats (.jpeg, .png). IEEE frowns on bitmapped formats
165 % which can result in "jaggedy"/blurry rendering of lines and letters as
166 % well as large increases in file sizes.
167 %
168 % You can find documentation about the pdfTeX application at:
169 % http://www.tug.org/applications/pdftex
170
171
172
173
174
175 % *** MATH PACKAGES ***
176 %
177 %\usepackage[cmex10]{amsmath}
178 % A popular package from the American Mathematical Society that provides
179 % many useful and powerful commands for dealing with mathematics. If using
180 % it, be sure to load this package with the cmex10 option to ensure that
181 % only type 1 fonts will utilized at all point sizes. Without this option,
182 % it is possible that some math symbols, particularly those within
183 % footnotes, will be rendered in bitmap form which will result in a
184 % document that can not be IEEE Xplore compliant!
185 %
186 % Also, note that the amsmath package sets \interdisplaylinepenalty to 10000
187 % thus preventing page breaks from occurring within multiline equations. Use:
188 %\interdisplaylinepenalty=2500
189 % after loading amsmath to restore such page breaks as IEEEtran.cls normally
190 % does. amsmath.sty is already installed on most LaTeX systems. The latest
191 % version and documentation can be obtained at:
192 % http://www.ctan.org/tex-archive/macros/latex/required/amslatex/math/
193
194
195
196
197
198 % *** SPECIALIZED LIST PACKAGES ***
199 %
200 \usepackage[ruled,lined,linesnumbered]{algorithm2e}
201 %\usepackage{algorithmic}
202 % algorithmic.sty was written by Peter Williams and Rogerio Brito.
203 % This package provides an algorithmic environment fo describing algorithms.
204 % You can use the algorithmic environment in-text or within a figure
205 % environment to provide for a floating algorithm. Do NOT use the algorithm
206 % floating environment provided by algorithm.sty (by the same authors) or
207 % algorithm2e.sty (by Christophe Fiorio) as IEEE does not use dedicated
208 % algorithm float types and packages that provide these will not provide
209 % correct IEEE style captions. The latest version and documentation of
210 % algorithmic.sty can be obtained at:
211 % http://www.ctan.org/tex-archive/macros/latex/contrib/algorithms/
212 % There is also a support site at:
213 % http://algorithms.berlios.de/index.html
214 % Also of interest may be the (relatively newer and more customizable)
215 % algorithmicx.sty package by Szasz Janos:
216 % http://www.ctan.org/tex-archive/macros/latex/contrib/algorithmicx/
217
218
219
220
221 % *** ALIGNMENT PACKAGES ***
222 %
223 \usepackage{array}
224 % Frank Mittelbach's and David Carlisle's array.sty patches and improves
225 % the standard LaTeX2e array and tabular environments to provide better
226 % appearance and additional user controls. As the default LaTeX2e table
227 % generation code is lacking to the point of almost being broken with
228 % respect to the quality of the end results, all users are strongly
229 % advised to use an enhanced (at the very least that provided by array.sty)
230 % set of table tools. array.sty is already installed on most systems. The
231 % latest version and documentation can be obtained at:
232 % http://www.ctan.org/tex-archive/macros/latex/required/tools/
233
234
235 \usepackage{mdwmath}
236 \usepackage{mdwtab}
237 % Also highly recommended is Mark Wooding's extremely powerful MDW tools,
238 % especially mdwmath.sty and mdwtab.sty which are used to format equations
239 % and tables, respectively. The MDWtools set is already installed on most
240 % LaTeX systems. The lastest version and documentation is available at:
241 % http://www.ctan.org/tex-archive/macros/latex/contrib/mdwtools/
242
243
244 % IEEEtran contains the IEEEeqnarray family of commands that can be used to
245 % generate multiline equations as well as matrices, tables, etc., of high
246 % quality.
247
248
249 %\usepackage{eqparbox}
250 % Also of notable interest is Scott Pakin's eqparbox package for creating
251 % (automatically sized) equal width boxes - aka "natural width parboxes".
252 % Available at:
253 % http://www.ctan.org/tex-archive/macros/latex/contrib/eqparbox/
254
255
256
257
258
259 % *** SUBFIGURE PACKAGES ***
260 %\usepackage[tight,footnotesize]{subfigure}
261 % subfigure.sty was written by Steven Douglas Cochran. This package makes it
262 % easy to put subfigures in your figures. e.g., "Figure 1a and 1b". For IEEE
263 % work, it is a good idea to load it with the tight package option to reduce
264 % the amount of white space around the subfigures. subfigure.sty is already
265 % installed on most LaTeX systems. The latest version and documentation can
266 % be obtained at:
267 % http://www.ctan.org/tex-archive/obsolete/macros/latex/contrib/subfigure/
268 % subfigure.sty has been superceeded by subfig.sty.
269
270
271
272 %\usepackage[caption=false]{caption}
273 %\usepackage[font=footnotesize]{subfig}
274 % subfig.sty, also written by Steven Douglas Cochran, is the modern
275 % replacement for subfigure.sty. However, subfig.sty requires and
276 % automatically loads Axel Sommerfeldt's caption.sty which will override
277 % IEEEtran.cls handling of captions and this will result in nonIEEE style
278 % figure/table captions. To prevent this problem, be sure and preload
279 % caption.sty with its "caption=false" package option. This is will preserve
280 % IEEEtran.cls handing of captions. Version 1.3 (2005/06/28) and later 
281 % (recommended due to many improvements over 1.2) of subfig.sty supports
282 % the caption=false option directly:
283 \usepackage[caption=false,font=footnotesize]{subfig}
284 %
285 % The latest version and documentation can be obtained at:
286 % http://www.ctan.org/tex-archive/macros/latex/contrib/subfig/
287 % The latest version and documentation of caption.sty can be obtained at:
288 % http://www.ctan.org/tex-archive/macros/latex/contrib/caption/
289
290
291
292
293 % *** FLOAT PACKAGES ***
294 %
295 \usepackage{fixltx2e}
296 % fixltx2e, the successor to the earlier fix2col.sty, was written by
297 % Frank Mittelbach and David Carlisle. This package corrects a few problems
298 % in the LaTeX2e kernel, the most notable of which is that in current
299 % LaTeX2e releases, the ordering of single and double column floats is not
300 % guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
301 % single column figure to be placed prior to an earlier double column
302 % figure. The latest version and documentation can be found at:
303 % http://www.ctan.org/tex-archive/macros/latex/base/
304
305
306
307 %\usepackage{stfloats}
308 % stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
309 % the ability to do double column floats at the bottom of the page as well
310 % as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
311 % LaTeX2e). It also provides a command:
312 %\fnbelowfloat
313 % to enable the placement of footnotes below bottom floats (the standard
314 % LaTeX2e kernel puts them above bottom floats). This is an invasive package
315 % which rewrites many portions of the LaTeX2e float routines. It may not work
316 % with other packages that modify the LaTeX2e float routines. The latest
317 % version and documentation can be obtained at:
318 % http://www.ctan.org/tex-archive/macros/latex/contrib/sttools/
319 % Documentation is contained in the stfloats.sty comments as well as in the
320 % presfull.pdf file. Do not use the stfloats baselinefloat ability as IEEE
321 % does not allow \baselineskip to stretch. Authors submitting work to the
322 % IEEE should note that IEEE rarely uses double column equations and
323 % that authors should try to avoid such use. Do not be tempted to use the
324 % cuted.sty or midfloat.sty packages (also by Sigitas Tolusis) as IEEE does
325 % not format its papers in such ways.
326
327
328
329 % correct bad hyphenation here
330 % \hyphenation{op-tical net-works semi-conduc-tor}
331
332
333 \begin{document}
334 %
335 % paper title
336 % can use linebreaks \\ within to get better formatting as desired
337 \title{GPU implementation of a region based algorithm \\ for large images segmentation}
338
339
340 % author names and affiliations
341 % use a multiple column layout for up to two different
342 % affiliations
343
344 \author{
345 \IEEEauthorblockN{Gilles Perrot$^1$, St\'{e}phane Domas$^1$, Rapha\"{e}l Couturier$^1$, Nicolas Bertaux$^2$}
346 \IEEEauthorblockA{$^1$Distributed Numerical Algorithmics team (AND), Laboratoire d'Informatique de Franche-comt\'{e}\\
347 Rue Engel Gros, 90000 Belfort, France.\\
348 forename.name@univ-fcomte.fr}
349 %\IEEEauthorblockN{Nicolas Bertaux}
350 \IEEEauthorblockA{$^2$ Institut Fresnel, CNRS, Aix-Marseille Universit\'e, Ecole Centrale Marseille,\\
351 Campus de Saint-J\'er\^ome, 13013 Marseille, France.\\
352 nicolas.bertaux@ec-marseille.fr}
353 }
354
355
356
357 % use for special paper notices
358 %\IEEEspecialpapernotice{(Invited Paper)}
359
360
361 % make the title area
362 \maketitle
363
364 \begin{abstract}
365 Image segmentation is one of the most challenging issues in image computing.
366 In this work, we focus on region-based active contour techniques (snakes) as they seem to achieve a high level of robustness and fit with a large range of
367 applications. Some algorithmic optimizations provide significant speedups, but even so, execution times are still non-neglectable  
368 with the continuing increase of image sizes. Moreover, these algorithms are not well suited for running on multi-core CPU's.
369 At the same time, recent developments of Graphical Processing Units (GPU) suggest that higher speedups could be obtained 
370 by use of their specific design. We have managed to adapt a specially efficient snake algorithm that fits recent Nvidia GPU architecture 
371 and takes advantage of its massive multithreaded execution capabilities. The speedup obtained is most often around 7.
372 \end{abstract}
373
374 \begin{IEEEkeywords}
375  GPU; segmentation; snake;
376 \end{IEEEkeywords}
377
378 \section{Introduction}
379 Segmentation and shape detection are still key issues in image computing. These techniques are used in numerous fields ranging from medical imaging to video tracking, shape recognition or localization.
380 Since 1988, the active contours (snakes) introduced by and  Kass et al. \cite{KassWT88}, have proved to be efficient and robust, especially against noise, for a wide range of image types. 
381
382 The main shortcoming of these algorithms is often their high dependence on the initial contour, though several contributions have lowered this dependency and also brought 
383 more accurate segmentation of non convex shape \cite{ChesnaudRB99}.
384
385 The information that drives a contour model comes either from the contour itself or from the characteristics of the regions it defines. 
386 For noisy images, the second option is often more suitable as it takes into account the statistical fluctuations of the pixels. 
387 One approach \cite{ChesnaudRB99} proposes a geometric (polygonal) region-based snake driven by the minimization of the likelihood (ML).
388
389 An important issue of image processing, especially segmentation, has always been the computation time of most algorithms. Over the years, the increase of CPU computing capabilities, 
390 although quite impressive, has not been able to fulfill the combined needs of growing resolution and real-time computation.
391 Since having been introduced in the early 1980's, the capabilities and speed of graphics accelerators have always been increasing. So much so that the recent GPGPU 
392 (General Purpose Graphic Processing Units) currently benefit by a massively parallel architecture for general purpose programming, especially when dealing with large matrices 
393 or vectors. On the other hand, their specific design obviously imposes a number of limitations and constraints. 
394 Some implementations of parametric snakes have already been tested,  such as \cite{Brunett}. However, a similar solution (computation per small tile)
395 is not suited for the algorithm we have implemented.
396
397 Our goal was to propose a way to fit such a snake algorithm to the Nvidia$^{\textcopyright}$ Tesla GPU architecture.
398 The remainder of this paper presents the principles of the algorithm and notations in section \ref{secCPUalgooutlines}. In section \ref{secCPUalgodetails}, the details of
399 the sequential CPU implementation are explained. Section \ref{GPUgeneralites} summarizes Nvidia's GPU 
400 important characteristics and how to deal with them efficiently. Then sections \ref{GPUimplementation} and \ref{secSpeedups} detail our GPU implementation and timing results. 
401 Finally, the conclusion of section \ref{secConclusion} evaluates the pros and cons of this implementation and then gives a few direction to be followed in future works.
402  
403
404 \section{\label{secCPUalgooutlines}Sequential algorithm : outlines} 
405 The goal of the active contour segmentation method (snake) we studied \cite{ChesnaudRB99} is to distinguish, inside an image $I$, a target region $T$ from the background region
406 $B$. The size of $I$ is L x H pixels of coordinates $(i,j)$ and gray level $z(i,j)$. $Z$ represents the gray levels data of $I$.
407 We assume that the gray levels of $T$ and $B$ are vectors of independent and identically distributed values, each with a probability density function (PDF)
408  $p^{\Omega}$ $(\Omega \in \{T ; B\})$. 
409 The present implementation uses a Gaussian PDF, but another one can easily be used as Gamma, Poisson,...(Cf. \cite{ChesnaudRB99})\dots 
410
411 The \textit{active contour} $S$, which defines the shape of $T$ is chosen as polygonal.
412 The purpose of the segmentation is then to determine the shape that optimizes a generalized log-likelihood-based criterion (GL).
413 This is done by an iterative process which is initialized with an arbitrary shape, then at each step :
414 \begin{enumerate}
415   \item it modifies the shape
416   \item it estimates the parameters of the Gaussian functions for the two regions and evaluates the criterion.
417   \item it validates the new shape if the criterion has a better value.
418 \end{enumerate}
419 A simplified description of it is given in \emph{Algorithm \ref{cpualgosimple}} which features two nested loops : the main one, on iteration level, is 
420 responsible for tuning the number of nodes ; the inner one, on step level, takes care of finding the best shape for a given number of nodes.
421 \emph{Figure \ref{images_algo}} shows intermediate results at iteration level. Sub-figure \emph{\ref{fig:labelinit}} shows the initial rectangular shape, \emph{\ref{fig:labelit1}}
422  shows the best four-node shape that ends
423 the first iteration. Sub-figures \emph{\ref{fig:labelit2}} and \emph{\ref{fig:labelit4}} show the best shape for an eight-node contour (resp. 29-node) 
424 which occurs at the end of the second  iteration (resp. fourth). 
425
426 \begin{algorithm}[h]
427 \label{cpualgosimple}
428 \caption{Sequential algorithm : outlines}
429 \SetNlSty{textbf}{}{:}
430
431   %compute\_cumulated\_images()\;
432   begin with a rectangular 4 nodes contour\;
433   \Repeat(\tcc*[f]{iteration level}){no more node can be added}{
434       \Repeat(\tcc*[f]{step level}){no more node can be moved}{
435           Test some other positions for each node, near its current position\;
436           Find the best GL and adjust the node's position\;
437       }
438   Add a node in the middle of each \emph{long enough} segment\;
439   }
440 \end{algorithm}
441
442
443 \begin{figure}[h]
444  \centering
445 \subfloat[Initial contour]{\label{fig:labelinit} \includegraphics[width=0.4\linewidth]{./img/cochon_petit_init.jpg}}\qquad
446 \subfloat[End of first iteration (4 nodes) ]{\label{fig:labelit1} \includegraphics[width=0.4\linewidth]{./img/cochon_petit_it1.jpg}}\\
447 \subfloat[End of second iteration (8 nodes)]{\label{fig:labelit2} \includegraphics[width=0.4\linewidth]{./img/cochon_petit_it2.jpg}}\qquad
448 \subfloat[End of fourth iteration (29 nodes)]{\label{fig:labelit4} \includegraphics[width=0.4\linewidth]{./img/cochon_petit_it4.jpg}}
449 %\subfloat[width=0.4\linewidth]{./img/cochon_b_entier.jpg}
450  % cochon_b_entier.jpg: 3960x2970 pixel, 72dpi, 139.70x104.78 cm, bb=0 0 3960 2970
451  \caption{segmentation of a noisy image}
452   \label{images_algo}
453 \end{figure}
454
455
456 \section{\label{secCPUalgodetails}Sequential algorithm : details}
457 \subsection{Criterion}
458 Let $p^{\Omega}$ be a Gaussian PDF. Its vector of parameters $\Theta_{\Omega}$ ($\Omega \in \{T ; B\}$) has two components,
459 the average value $\mu$ and the standard deviation $\sigma$.
460 The likelihood for the regions $\Omega$ $(\Omega \in \{T ; B\})$ is given by
461 $$ P[Z|T, B, \Theta_T, \Theta_B] = P(Z|T, \Theta_T)P(Z|B, \Theta_B)$$ 
462 where
463 $$P(Z|\Omega,  \Theta_{\Omega}) = \prod_{(i,j)\in \Omega} p^{\Omega}[z(i,j), \Theta_{\Omega}] ~~~~(\Omega \in \{T ; B\})$$ 
464 The log-likelihood of the region $\Omega$ is then  
465 $$-N_{\Omega}\log\left(\sqrt{2\pi}\right) -N_{\Omega}.log\left(\sigma\right) - \frac{1}{2\sigma^2}\sum_{(i,j)\in \Omega} \left( z(i,j)-\mu \right)^2 $$
466 inside which the vectors of parameters $\Theta_{\Omega}$ are determined by ML estimation
467 $$
468 \widehat{\Theta_{\Omega}} \left(
469 \begin{array}{l}
470 \widehat{\mu_{\Omega}} = \frac{1}{N_{\Omega}} \displaystyle\sum_{(i,j)\in \Omega} z(i,j) \\
471 \widehat{\sigma^2_{\Omega}} = \frac{1}{N_{\Omega}} \displaystyle\sum_{(i,j)\in \Omega} \left(z(i,j) - \widehat{\mu_{\Omega}}\right)^2 \\
472   \end{array}
473 \right.
474 $$
475
476 Considering the two regions, the criterion to be optimized is then, up to a constant, the Generalized Likelihood (GL):
477 $$GL = \frac{1}{2}\left( N_B\log\left(\widehat{\sigma_B}^2\right) + N_T\log\left(\widehat{\sigma_T}^2\right)\right)$$ 
478
479 \subsection{CPU implementation}
480 Let $S_{n,l}$ be the polygonal contour state at step $l$ of iteration $n$, and $S_{n,l}^i$ the node $i$ of $S_{n,l}$ ($i \in [0;N_n]$).
481 $S_{n,l}^{i,w}$ is the neighbor of index $\omega$ of the node $S_{n,l}^i$ in a 8-connexity meaning with $d$ pixels scope.
482 Each segment of $S_{n,l}$ is considered as an oriented list of discrete points.
483 Chesnaud \& R\'{e}fr\'{e}gier, based on the Green-Ostogradski theorem,  have shown how to replace the 2 dimensions (2D) sums needed to estimate $\Theta_{\Omega}$ by 1 dimension sums along $S_{n,l}$ \cite{ChesnaudRB99}.
484 This approach leads to compute a pair of transformed images, called cumulated images, at the very beginning of the process, which are then used as lookup tables. 
485 It also involves weighting coefficients for pixels and segments of the contour. See \cite{ChesnaudRB99} for details.
486 Therefore, beyond this point, we will talk about the \emph{contribution} of each point to the 1D sums. By extension, we also talk about the \emph{contribution} of each segment to the 1D sums.
487
488 A more detailed description of the sequential algorithm is given by \emph{Algorithm \ref{cpualgo}}. 
489 The process starts with the computation of cumulated images ; an initialization stage  takes place from line \ref{debinit} to line \ref{fininit}. 
490 Then we recognize the two nested loops (line \ref{loopnewnodes} and line \ref{loopmovenodes}) and finally the heart of the algorithm stands on line \ref{kernelGL} which represents
491 the main part of the calculations to be done :
492 \begin{enumerate}
493  \item compute the various sums without the contributions of both segments connected to current node  $S_{n,l}^i$.
494   \item \label{CPUcontrib_segments} compute the contributions of both segments, which requires :
495   \begin{itemize}
496    \item \label{CPUbresenham} To determine the coordinates of every discrete pixel of both segments connected to $S_{n,l}^{i,w}$.
497     \item \label{CPUcontrib_pixels} To compute every pixel contribution.
498     \item To sum pixel contributions to obtain segment contributions.
499   \end{itemize}
500    \item compute the GL given the contribution of each segment of the tested contour.
501 \end{enumerate}
502
503 \begin{algorithm}[h]
504 \SetNlSty{textbf}{}{:}
505 \caption{Sequential simplified algorithm} 
506 \label{cpualgo}
507    read image from HDD\;
508    compute\_cumulated\_images()\label{cumuls}\;
509    iteration $n \leftarrow 0$\label{debinit}\;
510    $N_0 \leftarrow 4$\;
511    $S_{n,l} \leftarrow S_{0,0}$\;
512    step $d \leftarrow d_{max}$ an arbitrary power of 2 value\;
513    current node $S_{0,0}^i \leftarrow S_{0,0}^0$\;
514    $l \leftarrow 0$\;
515    compute $GL_{ref}$, the GL of $S_{n,0}$\label{fininit}\;
516   \Repeat(\tcc*[f]{iteration level, n index}){no new node added}{\label{loopnewnodes}
517     \Repeat(\tcc*[f]{step level, l index}){no node move occured}{\label{loopmovenodes}
518       \For{$i=0$ to $N_n$}{
519         $S_{n,l}^{i,w}$ ($w \in [0;7]$) are the neighbors of $S_{n,l}^i$ by $d$ pixels\;
520         \For{$w=0$ to $7$}{
521           compute $GL_w$ for $S_{n,l}$ when $S_{n,l}^{i,w}$ replaces $S_{n,l}^i$ \label{kernelGL}\;
522           \lIf{$GL_w$ is better than $GL_{ref}$}{
523             $GL_{ref} \leftarrow GL_w$\;
524             move node $S_{n,l}^i \leftarrow S_{n,l}^{i,w}$\;
525           }
526         }
527       }
528      $l \leftarrow l+1$\;
529    }
530     add new nodes, $N_n \leftarrow N_n + N_{newnodes}$\;
531    \lIf{$d > 1$}{ $d \leftarrow d/2$ } \lElse{ $d=1$ }\;
532     $n \leftarrow n+1$\;
533     compute $GL_{ref}$, the GL of $S_{n,0}$ \;
534   }
535 \end{algorithm}
536
537
538
539 The profiling results of the CPU implementation shown in \emph{Figure \ref{CPUprofile}} display the relative costs of the most time-consumming functions.
540 It appears that more than 80\% of the total execution time is always spent by only three functions~:
541 \begin{itemize}
542  \item \texttt{compute\_segment\_contribution()} which is responsible for point \ref{CPUcontrib_segments} above,
543   \item \texttt{compute\_cumulated\_images()} which computes the 3 lookup tables at the very beginning,
544   \item \texttt{compute\_pixels\_coordinate()} which is called by \texttt{compute\_segment\_contribution()}.
545 \end{itemize}
546
547 \begin{figure}[h]
548  \centering
549  \includegraphics[width=0.9\linewidth, height=0.5\linewidth]{./img/data_profile_cpu.png}
550  \caption{\label{CPUprofile}the three most-consumming functions for various image sizes}
551 \end{figure}
552
553 Measurements have been performed for several image sizes from 15~MPixels (about 3900 x 3900) 
554 to 144 MPixels (about 12000 x 12000). On the one hand, we can notice that function \texttt{compute\_segment\_contribution()} always lasts more than 45\% of the total running time, and even 
555 more when the image gets larger. 
556 On the other hand, the function \texttt{compute\_cumulated\_images()} costs more than 23\%, decreasing with image size, while function \texttt{compute\_pixels\_coordinate()} always takes around 6\%.
557 It confirms that the need for parallelization resides in line \ref{kernelGL} and line \ref{cumuls} of Algorithm \ref{cpualgo} as they contain every call to those three functions.
558
559 The following sections detail how we managed to implement these time-consumming functions in parallel, but
560 a brief reminder on GPU's recent architecture is presented first. 
561  
562
563
564 \section{\label{GPUgeneralites}NVidia's GPU architecture}
565 GPUs are multi-core, multi-threaded processors, optimized for highly parallel computation. Their design focuses on a Single Instruction Multiple Threads (SIMT) model by devoting
566 more transistors to data processing rather than data-caching and flow control \cite{CUDAPG}.
567  
568 For example, Figure \ref{GPUC1060} shows a Tesla C1060  with its 4GB of global memory and 30 SM processors, each including  :
569 \begin{itemize}
570  \item 8 Scalar Processors (SP)
571   \item a Floating Point Unit (FPU)
572   \item a parallel execution unit (SIMT) that runs threads by warps of 32. 
573  \item 16KB of shared memory, organized in 16 banks of 32 bits words
574 \end{itemize}
575 Nvidia uses a parameter called the \emph{compute capability} of each GPU model. Its value is composed of a major number and a minor number ; for example the C1060 is a sm13 GPU (major=1 minor=3) 
576 and C2050 is a sm20 GPU.
577
578 \begin{figure*}[htbp]
579  \centering
580  \includegraphics[width=0.7\linewidth]{./img/GPU_block.png} 
581  \caption{\label{GPUC1060}schematic diagram of GPU's internal architecture}
582 \end{figure*}
583
584 The recent Fermi cards (eg. C2050,) have improved performances by supplying more shared memory in a 32 banks array, a second execution 
585 unit and several managing 
586 capabilities on both the shared memory and level 1 cache memory ( \cite{CUDAPG}, \cite{CUDAFT}, \cite{CUDAFC}. 
587 However, writing efficient code for such architectures is not obvious, as re-serialization must be avoided as much as possible. Thus, when designing, one must 
588 keep a few key points in mind :
589 \begin{itemize}
590  \item the CUDA model organizes threads by a) threads blocks in which synchronization is possible, b) a grid of blocks with no possible synchronization
591       between blocks.
592   \item there is no way to know in what order the blocks are to be scheduled during one single kernel execution.
593   \item data must be kept in GPU memory, to reduce the overhead due to copying between CPU and GPU memories.
594   \item the total amount of threads running the same computation must be maximized.
595   \item the number of execution branches inside a block should be reduced as much as possible.
596   \item global memory accesses should be coalescent, \emph{ie}. memory accesses done by physically parallel threads (16 at a time) must be consecutive and contained in a 128 Bytes range.
597   \item shared memory is organized by 16 x 32 bits wide banks. To avoid bank conflicts, each parallel thread (16 at a time) must access a different bank.
598 \end{itemize}
599
600 All the above charasteristics make it always a quite constrained problem to solve when designing a GPU code. 
601 %detailler
602 Moreover, a non suited code would probably run even slower on GPU than on CPU due to the automatic serialization which would be done at run time.
603 %%
604 \section{\label{GPUimplementation}GPU implementation}
605 In the implementation described below, pre-computations and proper segmentation are discussed separately.
606 To keep data in GPU memory, the whole computation is assigned to the GPU. CPU still hosts :
607 \begin{itemize}
608  \item data reading from HDD
609   \item data writing on HDD if needed
610   \item main loops control (corresponding to lines \ref{loopnewnodes} and \ref{loopmovenodes} of Algorithm \ref{cpualgo})
611 \end{itemize}
612
613 It must be noticed that controlling these loops is achieved with only a very small amount of data being transferred between host (CPU) and device (GPU),
614 which does not produce high overhead. \\
615 Morever, the structures described below need 20 Bytes per pixel of the image to process (plus an offset of about 50~MByte). 
616 It defines the maximum image size we can accept : approximately 150 M Pixels.
617
618 \subsection{Pre-computations}
619 To replace 2D sums by 1D sums, Chesnaud \textit{et al.} \cite{ChesnaudRB99}  have shown that the three matrices below should be computed :
620 $$C_1(i,j) = \sum_{k=0}^{k=j} (1+k)$$
621 $$C_z(i,j) = \sum_{k=0}^{k=j} z(i,k)$$ and
622 $$C_{z^2}(i,j) = \sum_{k=0}^{k=j} z^2(i,k)$$
623 Where $z(i,k)$ is the gray level of pixel of coordinate $(i,j)$, so that $C_1$, $C_z$ and $C_{z^2}$ are the same size as image $I$.
624
625 \begin{figure*}[htbp]
626   \centering
627  \resizebox{0.8\linewidth}{0.3\linewidth}{\input{./img/GPUcumuls.pdf_t}}
628   \caption{\label{GPUcumuls}\texttt{compute\_blocks\_prefixes()} details.}
629 \end{figure*}
630
631 \medskip 
632 First, we chose not to generate $C_1(i,j)$, which requires that values should be computed when needed, but saves global memory and does not lead to any overhead.
633 The computation of $C_{z}$ and $C_{z^2}$ easily decomposes into series of  \emph{inclusive prefixsums} \cite{Harris07}.
634 However, by keeping the \emph{1 thread per pixel} rule, as the total number of threads that can be run in a grid cannot exceed $2^{25}$ (Cf. \cite{CUDAPG}),
635 slicing is necessary for images exceeding a size threshold which can vary according to the GPU model (e.g. 33 MPix for sm13 GPU, eg. C1060).
636 It's quite easy to do, but it leads to a small overhead as the process requires multiple calls to one kernel.
637 Slicing can be done in two ways :
638 \begin{itemize}
639  \item all slices are of the same size (balanced)
640   \item slices fit the maximum size allowed by the GPU, leaving one smaller slice at the end of the process (full-sized).
641 \end{itemize}
642 The balanced slice option has proved to run faster.\\
643 For example : if a given image has 9000 lines and the GPU can process up to 4000 lines at a time, it's faster to run 3 times with 3000 lines rather than twice with 
644 4000 and once with 1000. 
645
646 As the sums in $C_z$ and $C_{z^2}$ are row-wide, it is easy to see that every block-wide sum will be needed before being able to use it in the global sum.
647 But as mentioned earlier, the scheduling of blocks must be considered as random.
648 So, in order to ensure synchronizations, each row of the original image is then treated by three different kernels : 
649 \begin{itemize}
650  \item \texttt{compute\_blocks\_prefixes()}.
651   \item \texttt{scan\_blocksums()}.
652   \item \texttt{add\_sums2prefixes()}.   
653 \end{itemize}
654 Figures \ref{GPUcumuls}, \ref{GPUscansomblocs} and \ref{GPUaddsoms2cumuls} show relevant data structures for a given row $i$ of $I$. 
655 We assume that each thread block runs $bs$ threads in parallel and each row of $C_z$ needs $n$ blocks to cover its $L$ pixels.
656
657 Figure \ref{GPUcumuls} shows the details of the process for row $i$ of the original image $I$, already stored in GPU global memory.
658 Operands are first copied into GPU shared memory for efficiency reasons.
659 An inclusive prefixsum is then performed inside each independant thread block. 
660 At this point, only the first shared memory block contains the final values. Its last element contains the sum of all
661 elements in the corresponding block of $I$.
662 In order to obtain the right values for the row $i$ of $C_z$, every element value in the other blocks must then be summed with an offset value. 
663 This offset value is the sum of all element values in every corresponding previous block of row $i$.
664
665 As the scheduling of blocks is fully unpredictable, the necessary intermediate results have to be stored in GPU global memory before exiting from kernel.
666 Each element of the prefixsums in GPU shared memory has been stored in its corresponding position in $C_z$ (GPU global mem),
667 along with the vector of block sums which will be passed later to the next kernel \texttt{scan\_blocksums()}.
668
669 The kernel \texttt{scan\_blocksums()} (Figure \ref{GPUscansomblocs}) only makes an exclusive prefixsum on the vector of block sums described above.
670 The result is a vector containing, at index $x$, the value to be added to every element of block $x$ in each line of $C_z$.
671
672 This summing is done in shared memory by kernel \texttt{add\_sums2prefixes()} as described by Figure \ref{GPUaddsoms2cumuls}.
673
674 The values of $C_{z^2}$ are obtained together with those of $C_{z}$ and in exactly the same way.
675 For publishing reasons, figures do not show the $C_{z^2}$ part of structures. 
676
677
678
679 \begin{figure*}[htbp]
680   \centering
681  \resizebox{0.6\linewidth}{0.2\linewidth}{\input{./img/GPUscansomblocs.pdf_t}}
682   \caption{\label{GPUscansomblocs}\texttt{scan\_blocksums()} details.}
683 \end{figure*}
684
685 \begin{figure*}[htbp]
686   \centering
687  \resizebox{0.7\linewidth}{0.4\linewidth}{\input{./img/GPUaddsoms2cumuls.pdf_t}}
688   \caption{\label{GPUaddsoms2cumuls}\texttt{add\_sums2prefixes()} details.}
689 \end{figure*}
690
691 With this implementation, speedups are quite significant (Table \ref{tabresults}). Moreover, the larger the image, 
692 the higher the speedup is, as the step-complexity of the sequential algorithm is of $O(N^2)$ and  $O(N\log(N))$ for the parallel version.
693 Even higher speedups are achieved by adapting the code to specific-size images, especially when the number of columns is a power of 2. This avoids 
694 inactive threads in the grid, and thus improves efficiency.
695 However, since the use of 64-bit sums is imposed by image sizes (up to 12000 pixel wide) and 16-bit pixel coding, 
696 computations are made with a 2-way bank conflict as sums are based on 64-bit words, thus creating overhead.
697
698
699 \subsection{Segment contributions}
700 The choice made for this implementation has been to keep the \emph{1 thread per pixel} rule for the main kernels.
701 Of course, some reduction stages need to override this principle and will be pointed out.
702
703 As each of the $N_n$ nodes of the contour $S_{n,l}$ may move to one of the eight neighbor positions as shown in \emph{Figure \ref{GPUtopo}}, 
704 there is $16 N_n$ segments whose contribution has to be estimated.
705 The best combination is then chosen to  obtain $S_{n,l+1}$ (Figure \ref{GPUtopo}).
706 Segment contributions are computed in parallel by kernel \texttt{GPU\_compute\_segments\_contrib()}.
707
708 \begin{figure}[h]
709   \centering
710  \resizebox{0.9\linewidth}{0.81\linewidth}{\input{./img/topologie.pdf_t}}
711   \caption{\label{GPUtopo}Optimization of node locations using 8 position tests around each node.}
712 \end{figure}
713
714 The grid parameters for this kernel are determined according to the size of the longest segment $npix_{max}$.
715 If $bs_{max}$ is the maximum theoritical blocksize that a GPU can accept,
716 \begin{itemize}
717  \item the block size $bs$ is taken as 
718   \begin{itemize}
719    \item $npix_{max}$'s next power of two if \\${npix_{max} \in [33 ; bs_{max} ] }$
720     \item 32 if ${npix_{max} < 32 }$
721     \item $bs_{max}$ if ${npix_{max} > 256 }$
722   \end{itemize}
723   \item the number of threads blocks assigned to each segment, $N_{TB} = \frac{npix_{max} + bs -1 }{bs}$ 
724 \end{itemize}
725 Our implementation makes intensive use of shared memory and does not allow the use of the maximum theoritical blocksizes 
726 (512 for sm13, 1024 for sm20, see \cite{CUDAFT} and \cite{CUDAPG}).
727 Instead we set $bs_{max}^{sm13} = 256$ and $bs_{max}^{sm20} = 512$. 
728 Anyway, testing has shown that most often, the best value is 256 for both \textit{sm13} and \textit{sm20} GPU's.
729
730 \begin{figure*}[htbp]
731   \centering
732  \resizebox{0.6\linewidth}{0.35\linewidth}{\input{./img/contribs_segments.pdf_t}}
733   \caption{\label{contribs_segments}structure for segments contributions computation. Gray symbols help to locate inactive threads as opposed to black 
734           ones that figure active threads.}
735 \end{figure*}
736
737 Then \texttt{GPU\_compute\_segments\_contrib()} computes in parallel :
738 \begin{itemize}
739  \item each pixel coordinates for all $16 N_n$ segments. Since the contour is only read in one direction, we have been able 
740   to use a very simple parallel algorithm instead of Bresenham's.
741 It is based on the slope $k$ of each segment~: one pixel per row if $|k|>1$, one pixel per column otherwise.
742   \item each pixel contribution by reading the corresponding values in the lookup tables.
743   \item each thread-block sum of individual pixel contributions by running a \textit{reduction} stage for each block.
744 \end{itemize}
745 The top line of Figure \ref{contribs_segments} shows the base data structure in GPU shared memory which is relative to one segment.
746 We concatenate the single segment structure as much as necessary to create a large vector representing every pixel of every test segment.
747 As each segment has a different size (most often different from any power of two), there is a non-neglectable number of inactive threads scattered in the whole structure.
748 Two stages are processed separately : one for all even nodes and another one for odd nodes,
749 as shown in the two bottom lines of Figure \ref{contribs_segments}. 
750
751
752 The process is entirely done in shared memory ; only a small amount of data needs to be stored in global memory for each segment~:
753 \begin{itemize}
754  \item the coordinates of its middle point, in order to be able to add nodes easily if needed.
755   \item the coordinates of its first and last two points, to compute the slope at each end of the segment.
756 \end{itemize}
757 The five values above are part of the weighting coefficients determination for each segment and node.
758
759  The \texttt{GPU\_sum\_contribs()} takes the blocks sums obtained by \texttt{GPU\_compute\_segments\_contrib()} and computes a second stage parallel summing to provide 
760 the $16 N_n$ segment contributions.
761
762 \subsection{Segments with a slope $k$ such as $|k|\leq1$}
763 Such a segment is treated with 1 thread per column and consequently, it often has more than one pixel per row as shown by Figure \ref{tripix}.
764 In an image row, consecutive pixels which belong to the target define an interval which can only have one low and one high ends. 
765 That's why, on each row, we choose to consider only the contributions of the innermost pixels.
766 This selection is also done inside \texttt{GPU\_compute\_segments\_contrib()} when reading the lookup tables for each pixel contribution. 
767 We simply set a null contribution for pixels that need to be ignored.
768 \begin{figure}[h]
769   \centering
770  \resizebox{0.75\linewidth}{0.35\linewidth}{\input{./img/tripix.pdf_t}}
771   \caption{\label{tripix}Zoom on part a of segment with $|k| < 1$,  at pixel level.}
772 \end{figure}
773
774
775 \subsection{Parameters estimation}
776 A \texttt{GPU\_compute\_GL()} kernel computes in parallel :
777 \begin{itemize}
778  \item every $8N_n$ vector of parameters values corresponding to each possible next state of the contour. Summing is done in shared memory but relevant 
779   data for these operations are stored in global memory.
780   \item every associated pseudo likelihood value.
781   \item every node substitution when better GL have been found and if it does not lead to segments crossing.
782 \end{itemize}
783
784 \subsection{End of segmentation}
785 Segmentation is considered achieved out when no other node can be added to the contour (Algorithm \ref{gpualgosimple}).
786 A very simple GPU kernel adds every possible node and returns the number it added.
787
788 \begin{algorithm}[h]
789 \label{gpualgosimple}
790 \caption{Parralel GPU algorithm : outlines. \texttt{<<<...>>>} indicates a GPU kernel parallel process.}
791 \SetNlSty{textbf}{}{:}
792   load images\;
793   transfer image from CPU to GPU\;
794   \texttt{<<<}compute the 2 cumulated images\texttt{>>>}\;
795   \texttt{<<<}initialize the contour\texttt{>>>}\;
796   \Repeat(\tcc*[f]{iteration level}){no more node can be added}{
797       \Repeat(\tcc*[f]{step level}){no more node can be moved}{
798           \texttt{<<<}find best neighbor contour\texttt{>>>}\;
799           \texttt{<<<}adjust node's positions\texttt{>>>}\;
800           transfer the number of moves achieved from GPU memory to CPU memory.
801       }
802   \texttt{<<<}Add nodes\texttt{>>>}\;
803   transfert the number of nodes added from GPU memory to CPU memory.
804   }
805 \end{algorithm}
806
807 \section{\label{secSpeedups}Speedups} 
808 Results are given in Table \ref{tabresults}. 
809 CPU timings were measured on an Intel Xeon E5530-2.4GHz with 12Go RAM (LIFC cluster).
810 GPU timings were obtained on a C2050 GPU with 3GB RAM (adonis-11.grenoble.grid5000.fr).\\
811 Execution times reported are means on ten executions.
812 %Measurements on CPU may vary more than on GPU. So CPU results given in \ref{tabresults} are near the fastest values we observed.
813 The image of figure \ref{fig:labelinit} (scaled down for printing reasons) is based on a real noisy image (800 x 800), 16-bit gray level.
814 Contrast has been enhanced for better viewing ; its various sizes have been obtained by interpolation and addition of gaussian noise.
815
816 We separately give the timings of pre-computations as they are a very general purpose piece of code.
817 Segmentations have been performed with strictly the same parameters (initial shape, threshold length).
818 The neighborhood distance for the first iteration is 32 pixels. It has a slight influence on the 
819 time process, but it leads to similar speedups values of approximately 7 times faster than CPU.
820
821 Though it does not appear in Table \ref{tabresults}, we observed that during segmentation stage, higher speedups are obtained in the very first iterations, when segments are made of a lot of pixels, leading to a higher parallelism ratio.\\
822 Several parameters prevent from achieving higher speedups~:
823 \begin{itemize}
824  \item accesses in the lookup tables in global memory cannot be coalescent. It would imply that the pixel contributions of a segment are stored in consecutive spaces in $C_z$ and $C_{z^2}$. 
825    This is only the case for horizontal segments.
826   \item the use of 64-bit words for computations in shared memory often leads to 2-way bank conflicts.
827   \item the level of parallelism is not so high, ie. the total number of pixel is not large enough to achieve impressive speedups. For example, on C2050 GPU, a grid can 
828   run about 66 million of threads, but a contour in a 10000 x 10000 image would be less than 0.1 million pixel long.
829 \end{itemize}
830
831
832 \begin{table}
833  \begin{center}
834 \begin{tabular}{|l| r|r r r|}
835 \hline
836 && CPU & GPU & Speedup\\\cline{3-5}
837 Image 15MP      & \bf total     & \bf0.51 s     &  \bf0.06 s & \bf x8.5 \\
838                 & pre-comp.     & 0.13 s        &  0.02 s & x6.5\\
839                 & segment.      & 0.46 s        &  0.04 s & x11.5\\\hline
840 Image 100MP     & \bf total     & \bf 4.08 s    &  \bf 0.59 s & \bf x6.9\\
841                 & pre-comp.     & 0.91 s        &  0.13 s & x6.9\\
842                 & segment.      & 3.17 s        &  0.46 s & x6.9\\\hline
843 Image 150Mp     & \bf total     & \bf 5.7 s     &  \bf 0.79 s & \bf x7.2\\
844                 & pre-comp.     & 1.4 s         &  0.20 s & x7.0\\
845                 & segment.      & 4.3 s         &  0.59 s & x7.3\\\hline
846  \end{tabular}
847  \end{center}
848
849 \caption{\label{tabresults} GPU (C2050, sm20) vs CPU timings.}
850 \end{table} 
851
852 \IEEEpeerreviewmaketitle
853
854 \vspace{1cm}
855
856 \section{\label{secConclusion}Conclusion}
857 The algorithm we have focused on is not easy to adapt for high speedups on GPGPU, though we managed to make it work faster than on CPU.
858 The main drawback is clearly its relative low level of parallelism. Nevertheless, we proposed different kernels that allowed us to take advantage of the computation power of  GPUs.
859  In future works, we plan  to try and manage to benefit from larger computing grids of thread blocks. Among the possible solutions, we plan to work on:
860 \begin{itemize}
861   \item slicing the image and proceeding the parts in parallel. This is made possible since sm20 GPU provide multi kernel capabilities.
862   \item slicing the image and proceeding the parts on two different GPUs, hosted by the same CPU. 
863 \end{itemize}
864 To extend the scope of this work beyond our present hypothesis (based on \emph{single} target segmentation), we are also going to investigate achieving speedups 
865 in \emph{multiple} target segmentation of large images. This might be useful in a wide range of applications.
866
867
868 %%RAPH
869 %%Est ce qu'on parle du fait qu'on va également réfléchir à repenser l'algo en gpu?
870
871
872 % trigger a \newpage just before the given reference
873 % number - used to balance the cumns on the last page
874 % adjust value as needed - may need to be readjusted if
875 % the document is modified later
876 %\IEEEtriggeratref{8}
877 % The "triggered" command can be changed if desired:
878 %\IEEEtriggercmd{\enlargethispage{-5in}}
879
880 % references section
881
882
883 \bibliographystyle{IEEEtran}
884
885 \bibliography{IEEEabrv,biblio}
886
887
888 % that's all folks
889 \end{document}
890
891