\subsection{Scheduling Schemes:}
-\indent Many scheduling schemes have been suggested so as to decrease the energy depletion and improve the lifetime of WSNs~\cite{ref58,ref59}. These schemes have dealt with scheduling the states of wireless sensor nodes and putting the idle sensor nodes into sleep mode (i.e, turn off the radio unit) to save the energy. Figure~\ref{wsns} summarizes the Scheduling Schemes in WSNs. In this figure, the scheduling schemes are classified into two main branches~\cite{ref56,ref57}: (i) wake up scheduling aims to manage the wireless sensor node states (sleep/wake up) in WSN by selecting a set of time intervals for a sensor nodes to be awake from continuous time duration. and (ii) topology control in which a set of a wireless sensor nodes are chose to be awake from a given sensor nodes in WSN.
+\indent Many scheduling schemes have been suggested so as to decrease the energy depletion and improve the lifetime of WSNs~\cite{ref58,ref59}. These schemes have dealt with scheduling the states of wireless sensor nodes and putting the idle sensor nodes into sleep mode (i.e, turn off the radio unit) to save the energy. Figure~\ref{wsns} summarizes the Scheduling Schemes in WSNs. In this figure, the scheduling schemes are classified into two main branches~\cite{ref56,ref57}: (i) wake up scheduling aims to manage the wireless sensor node states (sleep/wake up) in WSN by selecting a set of time intervals for a sensor nodes to be awake from continuous time duration. and (ii) topology control in which a set of a wireless sensor nodes are chosen to be awake from a given sensor nodes in WSN.
\begin{figure}[h!]
\centering
\includegraphics[scale=0.5]{Figures/ch1/WSN-S.pdf}
\subsubsection{Wake up Scheduling Schemes:}
-\indent This section demonstrates the scheduling schemes from point of view of schedule composition process and the framework of the wake up schedule. In these scheduling schemes, the wake up interval refers to the period of time at which the radio unit is turned on so as to sends or receives the packets. Whilst, the sleep interval refers to a period of time at which the radio unit is turned off so as to retain the energy of wireless sensor node. Some schemes divide the time into equal length durations of time that called slotted schemes; on the other hand, the other schemes works with the time in continuous way that called unslotted schemes. The sleep and wake up intervals are defined for the unslotted schemes, whilst for the slotted schemes, these intervals are represented as multiples of slots. The wake up schedule represents a set of a wake up and sleep intervals, which are produced for one period. This schedule replicates to each period and it can be changed by the wake up scheduling scheme during the different periods of time. The final goal of this wake up schedule is to permit to exchange the data among the wireless sensor nodes in WSN during the wake up interval. As shown in figure~\ref{wsns}, the requirement for synchronization has been categorized the wake up scheduling into three categories:
+\indent This section demonstrates the scheduling schemes from point of view of schedule composition process and the framework of the wake up schedule. In these scheduling schemes, the wake up interval refers to the period of time at which the radio unit is turned on so as to sends or receives the packets. Whilst, the sleep interval refers to a period of time at which the radio unit is turned off so as to retain the energy of wireless sensor node. Some schemes divide the time into equal length durations of time that called slotted schemes; on the other hand, the other schemes works with the time in continuous way that called unslotted schemes. The sleep and wake up intervals are defined for the unslotted schemes, whilst for the slotted schemes, these intervals are represented as multiples of slots. The wake up schedule represents a set of a wake up and sleep intervals, which are produced for one period. This schedule replicates to each period and it can be changed by the wake up scheduling scheme during the different periods of time. The final goal of this wake up schedule is to permit to exchange the data among the wireless sensor nodes in WSN during the wake up interval. As shown in figure~\ref{wsns}, the requirement for synchronization has been categorized the wake up scheduling into three categories~\cite{ref57}:
\begin{enumerate} [(I)]
-\item \textbf{Synchronous Schemes:} The time synchronization among wireless sensor nodes is required. Several synchronous approaches have been suggested that based on the time synchronization in their work. The majority of synchronous schemes work in periodic way by preparing the same wake up schedule for every period unless a change by wake up scheduling algorithm. On the other hand, the aperiodic schemes does not apply the periodic schedule.
+\item \textbf{Synchronous Schemes:} The time synchronization among wireless sensor nodes is required. Several synchronous approaches have been suggested that based on the time synchronization in their work. The majority of synchronous schemes work in periodic (cyclic) way by preparing the same wake up schedule for every period unless a change by wake up scheduling algorithm. On the other hand, the aperiodic schemes does not apply the periodic schedule.
\begin{enumerate} [(A)]
-\item The periodic wakeup scheduling schemes can be operate in slotted and unslotted way, where the period is divided into equal-length slots in the slotted schemes. The major challenge in periodic wakeup scheduling is to select and activate the best time interval(s) in a period so as to the wireless sensor node performs the communication (sending and receiving). This is from point of view of wireless sensor node, whilst from the standpoint of the WSN, choosing the time intervals through the wireless sensor nodes to satisfy a certain performance factor in WSN seems to be difficult. This performance can be carried out from the cooperation among the sensor nodes in WSN to produce the wake up schedule. The periodic wakeup scheduling schemes are classified into five groups based on the degree of the cooperation~\cite{ref57}:
+\item The periodic wakeup scheduling schemes work either in slotted and unslotted way, where the period is divided into equal-length slots in the slotted schemes. The major challenge in periodic wakeup scheduling is to select and activate the best time interval(s) in a period so as to the wireless sensor node performs the communication (sending and receiving). This is from point of view of wireless sensor node, whilst from the standpoint of the WSN, choosing the time intervals through the wireless sensor nodes to satisfy a certain performance factor in WSN seems to be hard task. This performance can be carried out from the cooperation among the sensor nodes in WSN to produce the wake up schedule. The periodic wakeup scheduling schemes are classified into five groups based on the degree of the cooperation~\cite{ref57}:
\begin{enumerate} [(i)]
\item Neighbor-coordinated in which the wireless sensor node generates its own wake up schedule taking into consideration the wake up schedules of its neighbor sensor nodes.
%The protocols that used this approach like : S-MAC protocol, Timeout MAC (T-MAC), Pattern-MAC (PMAC), Dynamic S-MAC (DSMAC), and ESC;