$\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
lemma.\end{proof}
-\begin{theorem} \label{prop:stop}
-If $\ov{h}$ is bijective and square-free, then
-$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
-\end{theorem}
+\theostopmajorant*
For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$,
let $S_{X,\ell}$ be the