]> AND Private Git Repository - hdrcouchot.git/blobdiff - 14Secrypt.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
après correction sylvaine
[hdrcouchot.git] / 14Secrypt.tex
index 69fb6d8462374bf50a8508cda61e04d087b549c5..5e4cafc4272a23dbcf3348975b5b5cec818ea973 100644 (file)
@@ -12,7 +12,7 @@ Une approche plus pragmatique consiste  à supprimer un cycle hamiltonien dans l
 graphe d'itérations $\textsc{giu}(\neg)$ (section~\ref{sec:hamiltonian}). 
 Pour obtenir plus rapidement une distribution uniforme, l'idéal serait
 de supprimer un cycle hamiltonien qui nierait autant de fois chaque bit. 
-Cette forme de cycle est dit équilibré. La section~\ref{sub:gray} établit le
+Cette forme de cycle est dite équilibré. La section~\ref{sub:gray} établit le
 lien avec les codes de Gray équilibrés, étudiés dans la littérature. 
 La section suivante présente une démarche de génération automatique de code de Gray équilibré (section~\ref{sec:induction}).
 La vitesse avec laquelle l'algorithme de PRNG converge en interne vers 
@@ -55,7 +55,7 @@ la matrice est stochastique à droite;
 \item pour chaque indice de colonne $j$, 
   $1 \le j\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le i\le 2^{\mathsf{N}}} M_{ij}$: 
   la matrice est stochastique à gauche;
-\item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
+\item Tous les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positifs, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
 \end{enumerate}
 Ce problème s'exprime sur des domaines finis entiers avec des opérateurs  
 arithmétiques simples (sommes et produits). Il pourrait théoriquement être 
@@ -69,7 +69,7 @@ ici pour  $\mathsf{N} = 2$. Dans ce code,
 \verb+summ(+$X,Y,R$\verb+)+ 
 valent True si et seulement si $R$ 
 est le produit matriciel  (ou la somme matricielle) 
-entre  $X$ and $Y$ respectivement. 
+entre  $X$ et $Y$ respectivement. 
 Il n'est pas difficile d'adapter ce code à n'importe quelle valeur 
 entière naturelle  $\mathsf{N}$.  
 
@@ -120,7 +120,7 @@ Cette approche, basée sur une démarche de type \emph{générer, tester} ne peu
 pas être retenue pour $n$ de grande taille, même 
 en s'appuyant sur l'efficience de l'algorithme de backtrack natif de PROLOG.
 
-Cependant, pour des valeurs de $n$ petites, nous avons 
+Cependant, pour des petites valeurs de $n$, nous avons 
 comparé les fonctions non équivalentes selon leur proportion
 à engendrer des temps de mélange petits (cf. équation~(\ref{eq:mt:ex})).
 
@@ -162,9 +162,9 @@ $$
 \end{table}
 \end{xpl}
 
-Une analyse syntaxique de ces fonctions ne permet pas, à priori, 
+Une analyse syntaxique de ces fonctions ne permet pas, a priori, 
 de déduire des règles permettant de construire de nouvelles
-fonction dont le temps de mélange serait faible.
+fonctions dont le temps de mélange serait faible.
 Cependant, le graphe $\textsc{giu}(f^*)$ 
 (donné à la Figure~\ref{fig:iteration:f*})
 est le $3$-cube dans lequel le cycle 
@@ -320,9 +320,9 @@ hamiltonien $c$.
 Aucun arc n'appartient à la fois  à $r$ et à $c$: 
 en effet, sinon $c$ contiendrait un n{\oe}ud deux fois.
 Ainsi aucune arête de $r$ n'est enlevée dans $C_1$.
-Le cycle $r$ est évidement un cycle hamiltonien et contient tous les n{\oe}uds.
-Tous les n{\oe}uds de $C_1$ dans lequel $c$ a été enlevé sont accessibles 
-depuis n'importe quel n{\oe}ud. Le graphe des itérations $\textsf{giu}$ qui
+Le cycle $r$ est évidemment un cycle hamiltonien et contient tous les n{\oe}uds.
+Tous les n{\oe}uds de $C_1$ dans lesquels $c$ a été enlevé sont accessibles 
+depuis n'importe quel n{\oe}ud. Le graphe des itérations $\textsc{giu}$ qui
 étend le précédent graphe est ainsi fortement connexe. 
 
 \end{proof}
@@ -371,7 +371,7 @@ plus,  comme  dans tout  code  de  Gray  cyclique, $\textit{TC}_n(i)$  est  pair
 $\forall  i\in\{1,...,n\}$,  alors  les  systèmes  ayant  un  nombre  d'éléments
 différent  de $2^k$,  ne peuvent  avoir  que des  codes de  Gray équilibrés  avec
 $\textit{TC}_n(i)=\lfloor\frac{2^n}{n}\rfloor$                                 ou
-$\textit{NT}_n(i)=\lceil\frac{2^n}{n}\rceil,    \forall    i\in\{1,...,n\}$   et
+$\textit{TC}_n(i)=\lceil\frac{2^n}{n}\rceil,    \forall    i\in\{1,...,n\}$   et
 vérifiant $\sum_{i=1}^n\textit{TC}_n(i) = 2^n$.
 
 \begin{xpl}
@@ -435,17 +435,17 @@ deux premiers éléments qui ont été intervertis.
 
 L'étape~(\ref{item:nondet}) n'est pas constructive: il n'est pas précisé
 comment sélectionner des sous-séquences qui assurent que le code obtenu est équilibré.
-La théorème suivante montre que c'est possible et sa preuve,
-donnée en annexes~\ref{anx:generateur}, explique comment le faire. 
+Le théorème suivant montre que c'est possible et sa preuve,
+donnée en annexe~\ref{anx:generateur}, explique comment le faire. 
 
 \begin{restatable}[Existence d'un code de Gray équilibré]{theorem}{theograyequilibre}
 \label{prop:balanced}
 Soit $\mathsf{N}$ dans $\Nats^*$, et $a_{\mathsf{N}}$ défini par 
 $a_{\mathsf{N}}= 2 \left\lfloor \dfrac{2^{\mathsf{N}}}{2\mathsf{N}} \right\rfloor$. 
-il existe une séquence $l$ dans l'étape~(\ref{item:nondet}) de l'extension
-de l'algorithme de \emph{Robinson-Cohn} extension telle que 
-le nombres de transitions $\textit{TC}_{\mathsf{N}}(i)$ 
-sont tous $a_{\mathsf{N}}$ ou $a_{\mathsf{N}}+2$ 
+Il existe une séquence $l$ dans l'étape~(\ref{item:nondet}) de l'extension
+de l'algorithme de \emph{Robinson-Cohn}  telle que 
+les nombres de transitions $\textit{TC}_{\mathsf{N}}(i)$ 
+valent tous $a_{\mathsf{N}}$ ou $a_{\mathsf{N}}+2$ 
 pour chaque  $i$, $1 \le i \le \mathsf{N}$.
 \end{restatable}
 
@@ -461,11 +461,11 @@ stratégie donnée.
 Tout d'abord, celles-ci peuvent être interprétées comme une marche le long d'un 
 graphe d'itérations $\textsc{giu}(f)$ tel que le choix de tel ou tel arc est donné par la 
 stratégie.
-On remarque que ce graphe d'itération est toujours un sous graphe 
+On remarque que ce graphe d'itérations est toujours un sous graphe 
 du   ${\mathsf{N}}$-cube augmenté des 
 boucles sur chaque sommet, \textit{i.e.}, les arcs
 $(v,v)$ pour chaque $v \in \Bool^{\mathsf{N}}$. 
-Ainsi, le travail ci dessous répond à la question de 
+Ainsi, le travail ci-dessous répond à la question de 
 définir la longueur du chemin minimum dans ce graphe pour 
 obtenir une distribution uniforme.
 Ceci se base sur la théorie des chaînes de Markov.
@@ -477,6 +477,8 @@ particulièrement au chapitre sur les temps d'arrêt.
 
 
 
+
+
 \begin{xpl}
 On considère par exemple le graphe $\textsc{giu}(f)$ donné à la 
 \textsc{Figure~\ref{fig:iteration:f*}.} et la fonction de 
@@ -484,7 +486,7 @@ probabilités $p$ définie sur l'ensemble des arcs comme suit:
 $$
 p(e) \left\{
 \begin{array}{ll}
-= \frac{2}{3} \textrm{ si $e=(v,v)$ avec $v \in \Bool^3$,}\\
+= \frac{1}{2} + \frac{1}{6} \textrm{ si $e=(v,v)$ avec $v \in \Bool^3$,}\\
 = \frac{1}{6} \textrm{ sinon.}
 \end{array}
 \right.  
@@ -507,7 +509,17 @@ P=\dfrac{1}{6} \left(
 \]
 \end{xpl}
 
+On remarque que dans cette marche on reste sur place avec une probabilité égale 
+à $\frac{1}{2}+\frac{1}{2\mathsf{N}}$ et l'on passe d'un sommet à son voisin
+lorsque c'est possible avec une probabilité $\frac{1}{2\mathsf{N}}$.
+Les probabilités usuelles que l'on appliquerait aux transitions de 
+l'algorithme~\ref{CI Algorithm} seraient quant à elles uniformément égales 
+à $\frac{1}{\mathsf{N}}$.
+Cette manière paresseuse d'itérer (puisqu'on reste plus souvent sur place) n'est donc pas équivalente à celle issue de l'algorithme. 
 
+Cependant, l'étude théorique de référence~\cite{LevinPeresWilmer2006}
+considère cette marche comme cadre. S'inspirant de 
+celle-ci, le travail suivant se replace donc dans ce cadre théorique.
 
 
 Tout d'abord, soit $\pi$ et $\mu$ deux distributions sur 
@@ -518,7 +530,7 @@ $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$
 On sait que 
 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$
 De plus, si 
-$\nu$ est une distribution on $\Bool^{\mathsf{N}}$, on a 
+$\nu$ est une distribution sur $\Bool^{\mathsf{N}}$, on a 
 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}.$$
 
 Soit $P$ une matrice d'une chaîne de Markov sur $\Bool^{\mathsf{N}}$. 
@@ -531,72 +543,32 @@ $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}$$
 et
 
 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
-
-Un résultat classique est
-
-$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
-
-
-
-
-Soit $(X_t)_{t\in \mathbb{N}}$ une suite de  variables aléatoires de 
-$\Bool^{\mathsf{N}}$.
-une variable aléatoire $\tau$ dans $\mathbb{N}$ est un  
-\emph{temps d'arrêt} pour la suite
-$(X_i)$ si pour chaque $t$ il existe $B_t\subseteq
-(\Bool^{\mathsf{N}})^{t+1}$ tel que 
-$\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. 
-En d'autres termes, l'événement $\{\tau = t \}$ dépend uniquement des valeurs 
-de  
-$(X_0,X_1,\ldots,X_t)$, et non de celles de $X_k$ pour $k > t$. 
  
-
-Soit $(X_t)_{t\in \mathbb{N}}$ une chaîne de Markov et 
-$f(X_{t-1},Z_t)$  une représentation fonctionnelle de celle-ci. 
-Un \emph{temps d'arrêt aléatoire} pour la chaîne de 
-Markov  est un temps d'arrêt pour 
-$(Z_t)_{t\in\mathbb{N}}$.
-Si la chaîne de Markov  est irréductible et a $\pi$
-comme distribution stationnaire, alors un 
-\emph{temps stationnaire} $\tau$ est temps d'arrêt aléatoire
-(qui peut dépendre de la configuration initiale $X$),
-tel que la distribution de $X_\tau$ est $\pi$:
-$$\P_X(X_\tau=Y)=\pi(Y).$$
-
-
-Un temps d'arrêt  $\tau$ est qualifié de  \emph{fort} si  $X_{\tau}$ 
-est indépendant de  $\tau$.  On a les deux théorèmes suivants, dont les 
-démonstrations sont données en annexes~\ref{anx:generateur}.
-
-
-\begin{theorem}
-Si $\tau$ est un temps d'arrêt fort, alors $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
-\P_X(\tau > t)$.
-\end{theorem}
+Intuitivement, $t_{\rm mix}(\varepsilon)$ est le nombre d'itérations nécessaire 
+pour être proche de la distribution stationnaire à $\varepsilon$ près, 
+peu importe la configuration de départ. On a le théorème suivant démontré en annexe~\ref{anx:generateur}.
 
 
-Soit alors $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ la fonction 
-telle que pour $X \in \Bool^{\mathsf{N}} $, 
-$(X,\ov{h}(X)) \in E$ et $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. 
-La fonction $\ov{h}$ est dite  {\it anti-involutive} si pour tout $X\in \Bool^{\mathsf{N}}$,
-$\ov{h}(\ov{h}(X))\neq X$. 
+\begin{restatable}[Temps de mixage sans chemin hamiltonien]{theorem}{theotpsmix}
+\label{theo:tmps:mix}
+On considère un $\mathsf{N}$-cube dans lequel un chemin hamiltonien a été supprimé et la fonction de 
+probabilités $p$ définie sur l'ensemble des arcs comme suit:
+\[
+p(e) \left\{
+\begin{array}{ll}
+= \frac{1}{2} + \frac{1}{2\mathsf{N}} \textrm{ si $e=(v,v)$ avec $v \in \Bool^{\mathsf{N}}$,}\\
+= \frac{1}{2\mathsf{N}} \textrm{ sinon.}
+\end{array}
+\right.  
+\]
 
+La chaîne de Markov associée converge vers la distribution uniforme et 
 
-\begin{theorem} \label{prop:stop}
-Si $\ov{h}$ est bijective et anti involutive 
-$\ov{h}(\ov{h}(X))\neq X$, alors
-$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$. 
-\end{theorem}
+\[
+\forall \varepsilon >0,\, t_{\rm mix}(\varepsilon) \le 32 {\mathsf{N}}^2+ 16{\mathsf{N}}\ln ({\mathsf{N}}+1) = O(N^2).
+\] 
+\end{restatable}
 
-Les détails de la preuve sont donnés en annexes~\ref{anx:generateur}.
-On remarque tout d'abord que la chaîne de Markov proposée ne suit pas exactement
-l'algorithme~\ref{CI Algorithm}. En effet dans la section présente, 
-la probabilité de rester dans une configuration donnée 
-est fixée à $\frac{1}{2}+\frac{1}{2n}$.
-Dans l'algorithme initial, celle-ci est de $\frac{1}{n}$.
-Cette version, qui reste davantage sur place que l'algorithme original,
-a été introduite pour simplifier le calcul d'un majorant 
-du temps d'arrêt.   
 
 
 Sans entrer dans les détails de la preuve, on remarque aussi
@@ -605,7 +577,7 @@ pour chaque n{\oe}ud du $\mathsf{N}$-cube
 un arc entrant et un arc sortant sont supprimés.
 Le fait qu'on enlève un cycle  hamiltonien et que ce dernier 
 soit équilibré n'est pas pris en compte.
-En intégrant cette contrainte, ce majorant  pourrait être réduite.
+En intégrant cette contrainte, ce majorant  pourrait être réduit.
 
 En effet, le temps de mixage est en $\Theta(N\ln N)$ lors d'une
 marche aléatoire classique paresseuse dans le $\mathsf{N}$-cube.
@@ -614,7 +586,7 @@ dans le contexte du $\mathsf{N}$-cube privé d'un chemin hamiltonien.
 
 On peut évaluer ceci pratiquement: pour une fonction
 $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ et une graine initiale
-$x^0$, le code donné à l'algorithme  ~\ref{algo:stop} retourne le 
+$x^0$, le code donné à l'algorithme~\ref{algo:stop} retourne le 
 nombre d'itérations suffisant tel que tous les éléments $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ sont équitables. Il permet de déduire une approximation de $E[\ts]$
 en l'instanciant un grand nombre de fois: pour chaque nombre $\mathsf{N}$, 
 $ 3 \le \mathsf{N} \le 16$, 10 fonctions ont été générées comme dans 
@@ -624,7 +596,7 @@ résume ces résultats. Dans celle-ci, un cercle  représente une approximation
 $E[\ts]$ pour un  $\mathsf{N}$ donné tandis que la courbe est une représentation de 
 la fonction $x \mapsto 2x\ln(2x+8)$. 
 On  constate que l'approximation de $E[\ts]$ est largement inférieure 
-à le majorant quadratique donné au théorème~\ref{prop:stop} et que la conjecture 
+au majorant quadratique donné au théorème~\ref{prop:stop} et que la conjecture 
 donnée au paragraphe précédent est sensée.
 
 
@@ -723,8 +695,9 @@ Elle n'est donc pas rappelée.
 \begin{xpl}
 
   On reprend l'exemple donné à la section~\ref{sec:plc}.
-  Dans le $3$-cube, le cycle hamiltonien défini par la séquence
-  $000,100,101,001,011,111,110,010,000$ a été supprimé engendrant 
+  On considère le cycle hamiltonien défini par la séquence
+  $000,100,101,001,011,111,110,010,000$. En supprimant celui-ci dans 
+  le $3$-cube, cela engendre 
   la fonction $f^*$ définie par 
   $$f^*(x_1,x_2,x_3)=
   (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2},
@@ -855,7 +828,7 @@ fonctions qui  ont été  générées selon  la méthode détaillée
 à la  section~\ref{sec:hamiltonian}.
 Pour  chaque nombre $n=3$,  $4$, $5$ et $6$,
 tous  les cycles  hamiltoniens non isomorphes  ont été générés.   Pour les
-valeur de $n=7$ et $8$,  seules $10^{5}$ cycles ont été évalués.  Parmi
+valeur de $n=7$ et $8$,  seuls $10^{5}$ cycles ont été évalués.  Parmi
 toutes  les fonctions  obtenues en  enlevant du  $n$-cube ces  cycles,  n'ont été
 retenues que celles  qui minimisaient le temps de mélange relatif  à une valeur de
 $\epsilon$ fixée à $10^{-8}$ et pour un mode donné.  
@@ -865,7 +838,7 @@ colonne sous la variable $b$.
 La variable $b'$ reprend le temps de mélange pour
 l'algorithme~\ref{CI Algorithm}. 
 On note que pour un nombre $n$ de bits fixé et un mode donné d'itérations, 
-il peut avoir plusieurs fonctions minimisant ce temps de mélange. De plus, comme ce temps 
+il peut avoir plusieurs fonctions minimisant ce temps de mélange. De plus, comme ce temps 
 de mélange est construit à partir de la matrice de Markov et que celle-ci dépend 
 du mode, une fonction peut être optimale pour un mode et  ne pas l'être pour l'autre
 (c.f. pour $n=5$).
@@ -929,7 +902,7 @@ $$
 \end{array}
 $$
 \caption{Nombre moyen 
-  d'appels à un générateurs binaire par bit généré}\label{table:marchevssaute}
+  d'appels à un générateur binaire par bit généré}\label{table:marchevssaute}
 \end{table}
 
 
@@ -954,7 +927,7 @@ permet de générer la stratégie aléatoire.
  que la chaîne est considérée comme aléatoire avec une confiance de $99\%$.
 
 
-Les tableau~\ref{fig:TEST:generalise} donnent
+Les tableaux~\ref{fig:TEST:generalise} donnent
 une vision synthétique de ces expérimentations. 
 Nous avons évalué les fonctions préfixées par 
 $f$ (respectivement $g$) avec les générateurs issus des itérations 
@@ -964,10 +937,10 @@ générateurs passe
 avec succès le test de NIST. 
 
 Interpréter ces résultats en concluant que ces générateurs sont 
-tous équivalents serait erroné: la meilleur des 
+tous équivalents serait erroné: la meilleure des 
 méthodes basées sur le mode des itérations
 généralisées (pour $n=8$ par exemple) 
-est au moins deux fois plus rapide que la meilleur de celles qui 
+est au moins deux fois plus rapide que la meilleure de celles qui 
 sont basées sur les itérations unaires.
 
 
@@ -1084,7 +1057,7 @@ Complexité linaire& 0.005 (0.98)& 0.534 (0.99)& 0.085 (0.97)& 0.996 (1.0)\\ \hl
 
 
 \section{Conclusion}
-Ce chaptitre a montré comment construire un PRNG chaotique, notamment à partir 
+Ce chapitre a montré comment construire un PRNG chaotique, notamment à partir 
 de codes de Gray équilibrés. Une méthode complètement automatique de
 construction de ce type de codes a été présentée étendant les méthodes 
 existantes.